问题描述
问题描述
哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。
现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念4个字符;而如果带猫去,则至少需要念6个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。
输入格式
输入第1行给出两个正整数N (≤100)和M,其中N是考试涉及的动物总数,M是用于直接变形的魔咒条数。为简单起见,我们将动物按1~N编号。随后M行,每行给出了3个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。
输出格式
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出0。如果有若干只动物都可以备选,则输出编号最小的那只。
输入样例
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例
4 70
解题思路
简化题目:有n个节点和m条边,每条边有不同的代价,想要从一个节点通过最小的代价到达所有的节点。请问,从哪个节点出发可以到达其他所有点,并且到达其他点的最大代价是最小的。
因此改题目只要套用最短路径模板即可,在最后遍历每个节点出发到达其他节点中最小的(最大最短路径)。(不太好描述,还是看代码吧)
解题代码
#include<iostream>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
struct node
{
int s;
int e;
int c;
}no[20010];//存储每条边
int way[105];
int n,m;
bool shortway(int a)
{
memset(way,INF,sizeof(way));
way[a]=0;
while(1)
{
int j=0;//计数器
bool update=false;
for(int i=0;i<2*m;i++)
{
int from=no[i].s;
if(way[from]!=INF)//当这条边的起点可以到达时
{
if(way[no[i].e]>way[from]+no[i].c)
{
way[no[i].e]=way[from]+no[i].c;
update=true;
}
}
}
j++;
if(!update) return true;//已经更新完毕
if(j==n) return false;//存在负圈
}
}
int main()
{
cin>>n>>m;
int ss,ee,cc;
for(int i=0;i<m;i++)
{
cin>>ss>>ee>>cc;
no[i].s=ss-1;
no[i].e=ee-1;
no[i].c=cc;
no[i+m].s=ee-1;
no[i+m].e=ss-1;
no[i+m].c=cc;
}
int maxnum=-1;
int maxcnt=INF;
for(int i=0;i<n;i++)
{
bool flag=1;
//得到从i出发到其他的最短路径
shortway(i);
int mm=0;//mm表示从节点i出发到达最远节点的最小代价
//找出最短路径中最长的那个,也就是从i动物变成j动物口号最长的
for(int j=0;j<n;j++)
{
if(way[j]>mm)
mm=way[j];
//存在不能变成的动物
if(mm==INF)
{
flag=0;
break;
}
}
//如果flag=1说明从i可以变成任意一只动物
//找出到达最远路径的代价最小的节点和代价
if(flag==1&&maxcnt>mm)
{
maxcnt=mm;
maxnum=i+1;
}
}
if(maxcnt==INF) cout<<"0";
else cout<<maxnum<<" "<<maxcnt;
return 0;
}