递归+回溯 解决全排列和子集问题

这篇博客探讨了如何使用回溯法解决全排列和子集问题。针对全排列,给定一个不含重复数字的数组,算法能够生成所有可能的排列组合。而对于子集,博客解释了如何通过递归实现从数组中生成所有可能的子集,同时指出子集的个数为2的n次方,其中n是数组元素个数。这两种问题都利用了回溯策略来遍历所有可能的选择,具有O(2^n)的时间复杂度和O(n)的空间复杂度。
摘要由CSDN通过智能技术生成

全排列问题

题目描述:
给定一个不含重复数字的数组 nums ,返回其所有可能的全排列 。你可以按任意顺序返回答案。
如给定[1,2,3],返回[1,2,3] [1,3,2] [2,1,3] [2,3,1] [3,2,1] [3,1,2]

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> res;
        backtrack(res,nums,0,nums.size());
        return res;

    }
    void backtrack(vector<vector<int>>& res,vector<int>& output,int first,int len){
        if(first==len){
            res.emplace_back(output);
            return;
        }
        for(int i=first;i<len;++i){
            swap(output[i],output[first]);
            backtrack(res,output,first+1,len);
            swap(output[i],output[first]);
        }            
    }
};

子集问题

1、元素互不相同,因此不用考虑去重的问题
2、子集的个数,有2的n次方个,n是数组元素个数。
3、其含义是对于每一个元素,都有放入子集和不放入子集2种选择
4、用回溯法模拟此选择过程即可
5、时间复杂度O(2的n次方),空间复杂度O(n),即递归深度

class Solution {
private:
    vector<vector<int>> ans;
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        int n=nums.size();
        vector<int> subset;
        dfs(nums,subset,0,n);
        return ans;
    }
    void dfs(vector<int>& nums,vector<int> subset,int k,int n){
        if(k==n){
            ans.emplace_back(subset);
            return;
        }           
        else{
            subset.push_back(nums[k]);
            dfs(nums,subset,k+1,n);
            subset.pop_back();
            dfs(nums,subset,k+1,n);
        }

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值