MapReduce WordCount 案例

MapReduce WordCount 案例

本地测试

在给定的文本文件中统计输出每一个单词出现的总次数

hello.txt

java python
c c++
php
java
python c
spark sqoop
flume flink
python c
spark sqoop
flume flink
python c
spark sqoop
flume flink

按照 MapReduce 编程规范,分别编写 Mapper,Reducer,Driver。
1)创建 maven 工程,MapReduce
2)在 pom.xml 文件中添加如下依赖

<dependencies>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>3.1.3</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.30</version>
 </dependency>
</dependencies>

3)在项目的 src/main/resources 目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n 
log4j.appender.logfile=org.apache.log4j.FileAppender 
log4j.appender.logfile.File=target/spring.log 
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout 
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

4)创建包名:com.xiaoqiu.mapreduce.wordcount
编写 Mapper 类

package com.xiaoqiu.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author 小邱
 * @version 0.0.1
 * @description WordCountMapper
 * @since 2021/12/2 16:18
 */
/**
 * KEYIN, map阶段输入的key的类型:LongWritable
 * VALUEIN,map阶段输入value类型:Text
 * KEYOUT,map阶段输出的Key类型:Text
 * VALUEOUT,map阶段输出的value类型:IntWritable
 */
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable>{
    private Text wordOut = new Text();
    private IntWritable outValue = new IntWritable(1);
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 1 获取一行
        String s = value.toString();
        // 2 切割
        String[] words = s.split(" ");
        // 3 循环写出
        for (String word : words) {
            // 封装
            wordOut.set(word);
            // 写出
            context.write(wordOut, outValue);
        }
    }
}

编写 Reducer 类

package com.xiaoqiu.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author 小邱
 * @version 0.0.1
 * @description WordCountReduce
 * @since 2021/12/2 16:19
 */
/**
* KEYIN, reduce阶段输入的key的类型:Text
* VALUEIN,reduce阶段输入value类型:IntWritable
* KEYOUT,reduce阶段输出的Key类型:Text
* VALUEOUT,reduce阶段输出的value类型:IntWritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable outValue = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        // 累加
        for (IntWritable value : values) {
            sum += value.get();
        }
        outValue.set(sum);
        //写出
        context.write(key,outValue);
    }
}

编写 Driver 驱动类

package com.xiaoqiu.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author 小邱
 * @version 0.0.1
 * @description WordCountDriver
 * @since 2021/12/2 16:20
 */
public class WordCountDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        // 1 创建配置类,获取job
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        // 2 设置jar包路径
        job.setJarByClass(WordCountDriver.class);
        // 3 关联mapper和reducer
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 4 设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5 设置reduce输出的kV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6 设置输入路径和输出路径
        FileInputFormat.setInputPaths(job,new Path("F:\\share\\input\\hello.txt"));
        FileOutputFormat.setOutputPath(job,new Path("F:\\share\\output"));
        // 7 提交job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0:1);

    }
}

5)本地测试
(1)需要首先配置好 HADOOP_HOME 变量以及 Windows 运行依赖
(2)在 IDEA/Eclipse 上运行程序
在这里插入图片描述
在这里插入图片描述
6)提交到集群测试
(1)用 maven 打 jar 包,需要添加的打包插件依赖

<build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

注意:如果工程上显示红叉。在项目上右键->maven->Reimport 刷新即可。
(2)修改程序文件路径
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
(3)将程序打成 jar 包
在这里插入图片描述

(4)修改不带依赖的 jar 包名称为 wc.jar,并拷贝该 jar 包到 Hadoop 集群的/opt/test 路径。
(5)上传hello.txt到hdfs:/input目录下,启动 Hadoop 集群,执行 WordCount 程序
hadoop jar wc.jar com.xiaoqiu.mapreduce.wordcount.WordCountDriver /input /output
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值