Hadoop 数据压缩
概述
1)压缩的好处和坏处
压缩的优点:以减少磁盘 IO、减少磁盘存储空间。
压缩的缺点:增加 CPU 开销。
2)压缩原则
(1)运算密集型的 Job,少用压缩
(2)IO 密集型的 Job,多用压缩
MR 支持的压缩编码
1)压缩算法对比介绍
2)压缩性能的比较
压缩方式选择
压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。
Gzip 压缩
优点:压缩率比较高;
缺点:不支持 Split;压缩/解压速度一般;
Bzip2 压缩
优点:压缩率高;支持 Split;
缺点:压缩/解压速度慢。
Lzo 压缩
优点:压缩/解压速度比较快;支持 Split;
缺点:压缩率一般;想支持切片需要额外创建索引。
Snappy 压缩
优点:压缩和解压缩速度快;
缺点:不支持 Split;压缩率一般;
压缩位置选择
压缩可以在 MapReduce 作用的任意阶段启用。
压缩参数配置
1)为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器
2)要在 Hadoop 中启用压缩,可以配置如下参数
压缩实操案例
Map 输出端采用压缩
即使你的 MapReduce 的输入输出文件都是未压缩的文件,你仍然可以对 Map 任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到 Reduce 节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置。
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 创建配置类,获取job
Configuration configuration = new Configuration();
// 开启 map 端输出压缩
configuration.setBoolean("mapreduce.map.output.compress", true);
// 设置 map 端输出压缩方式
configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);
Job job = Job.getInstance(configuration);
// 2 设置jar包路径
job.setJarByClass(WordCountDriver.class);
// 3 关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置reduce输出的kV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入路径和输出路径
FileInputFormat.setInputPaths(job,new Path("F:\\share\\input\\hello.txt"));
FileOutputFormat.setOutputPath(job,new Path("F:\\share\\output"));
// 7 提交job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0:1);
}
}
Reduce 输出端采用压缩
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 创建配置类,获取job
Configuration configuration = new Configuration();
// 开启 map 端输出压缩
configuration.setBoolean("mapreduce.map.output.compress", true);
// 设置 map 端输出压缩方式
configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);
Job job = Job.getInstance(configuration);
// 2 设置jar包路径
job.setJarByClass(WordCountDriver.class);
// 3 关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置reduce输出的kV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入路径和输出路径
FileInputFormat.setInputPaths(job,new Path("F:\\share\\input\\hello.txt"));
FileOutputFormat.setOutputPath(job,new Path("F:\\share\\output"));
// 设置 reduce 端输出压缩开启
FileOutputFormat.setCompressOutput(job, true);
// 设置压缩的方式
FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);
// 7 提交job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0:1);
}
}