算法导论复习

渐进符号

基本定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意下o ω的定义,当n趋于正无穷时,
f(n)远小于g(n)此时记 f(n)=o(g(n))
f(n)远大于g(n)此时记f(n)=ω(g(n))
在这里插入图片描述
所以上述这个题是D错了

在这里插入图片描述
在这里插入图片描述

例题1:
在这里插入图片描述
T3(n) = Ω(T1(n))
因为: T1 = 30logn. T3 = 10log3n
则 10log3n >= C * 30logn

例题2:
两个算法的时间复杂度是,T1(n) = 10n^2
T2(n) = 32^n
则 T1(n) = O(T2(n))

例题3:
在这里插入图片描述
在这里插入图片描述

分治法

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代入法求递归式解

动态规划

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

矩阵链乘问题

在这里插入图片描述
视频讲解

最长公共子序列问题

在这里插入图片描述
在这里插入图片描述

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        char[] str1 = text1.toCharArray();
        char[] str2 = text2.toCharArray();
        int n = str1.length;
        int m = str2.length;
        int[][] dp = new int[n + 1][m + 1]; //dp[i][j]表示以str1[i] str2[j]结尾的最长公共子序列
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                if(str1[i-1] == str2[j-1]) dp[i][j] = Math.max(dp[i][j],dp[i-1][j-1] + 1);
            }
        }
        return dp[n][m];
    }
}
钢条切割问题

相关说明
时间复杂度是 O ( n 2 ) O(n^2) O(n2)

装配线调度算法

相关说明

最优二叉查找树

题目描述与详解
视频讲解

贪心法

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

任务调度问题

问题描述与解答

单处理机上带截止时间和惩罚的任务调度问题

在这里插入图片描述
在这里插入图片描述
算法实现
这个算法的时间复杂度是 O ( n 2 ) O(n^2) O(n2)

活动选择问题

在这里插入图片描述
正确方法:最早结束的活动优先
在这里插入图片描述
在这里插入图片描述
时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)算法的瓶颈在排序上
在这里插入图片描述

Leetcode区间问题合集

01背包

在这里插入图片描述

import java.util.*;

public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int m = sc.nextInt();
        int[] v = new int[n+1];
        int[] w = new int[n+1];
        for(int i = 1; i <= n; i++){
            v[i] = sc.nextInt();
            w[i] = sc.nextInt();
        }
        int[][] f = new int[n+1][m+1]; //f[i][j]表示从1~i个物品中选择最大不超过j容量的最大方案
        for(int i = 1; i <= n; i++){
            for(int j = 0; j <= m; j++){
                f[i][j] = f[i-1][j];
                if(j >= v[i]) f[i][j] = Math.max(f[i][j],f[i-1][j-v[i]]+w[i]);
            }
        }
        System.out.println(f[n][m]);
    }
}

完全背包

在这里插入图片描述
完全背包问题每个东西可以用无限次
01背包每个东西只能用一次

f ( i , j ) f(i,j) f(i,j) 从前 i i i个物品中选总体积不超过j的最大价值方案
01背包问题是 把 f ( i , j ) f(i,j) f(i,j) 分为 选第 i i i 个物品 和 不选第 i i i 个物品
完全背包问题是分成 选 0 个第 i i i 个物品,选1个第 i i i个物品…一直到选 k k k个第 i i i个物品…

0 0 0个第 i i i个物品 f ( i , j ) = f ( i − 1 , j ) f(i,j) = f(i-1,j) f(i,j)=f(i1,j)
k k k个第 i i i个物品的话
f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j) = max(f(i-1,j), f(i-1,j-weight[i]) + value[i], ... .... , f(i-1, j - k*weight[i]) + k*value[i] , ....... ) f(i,j)=max(f(i1,j),f(i1,jweight[i])+value[i],.......,f(i1,jkweight[i])+kvalue[i],.......)

f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j) = max(f(i-1,j), f(i-1,j-weight[i]) + value[i], ... .... , f(i-1, j - k*weight[i]) + k*value[i] , ....... ) f(i,j)=max(f(i1,j),f(i1,jweight[i])+value[i],.......,f(i1,jkweight[i])+kvalue[i],.......)

j = j − w e i g h t [ i ] j = j - weight[i] j=jweight[i], 带入那么有

f ( i , j − w e i g h t [ i ] ) = m a x ( f ( i − 1 , j − w e i g h t [ i ] ) , f ( i − 1 , j − 2 ∗ w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + ( k − 1 ) ∗ v a l u e [ i ] , f ( i − 1 , j − ( k + 1 ) ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j-weight[i]) = max(f(i-1,j-weight[i]) , f(i-1,j-2*weight[i])+value[i] , ... ... , f(i-1,j-k*weight[i])+(k-1)*value[i] , f(i-1,j-(k+1)*weight[i])+k*value[i], .... ... ) f(i,jweight[i])=max(f(i1,jweight[i]),f(i1,j2weight[i])+value[i],......,f(i1,jkweight[i])+(k1)value[i],f(i1,j(k+1)weight[i])+kvalue[i],.......)

#include<algorithm>
#include <iostream>
using namespace std;
const int N = 10010;
int n,m;
int v[N],w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++) cin >> v[i] >> w[i];
    for(int i=1;i<=n;i++){
        for(int j=0;j<=m;j++){
            for(int k=0;k*v[i]<=j;k++){//这里是k*v[i]<=j别写成m了
                f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
            }
        }
    }
    cout << f[n][m];
    return 0;
}

然后可以进一步优化

可以看到 f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j) = max(f(i-1,j), f(i-1,j-weight[i]) + value[i], ... .... , f(i-1, j - k*weight[i]) + k*value[i] , ....... ) f(i,j)=max(f(i1,j),f(i1,jweight[i])+value[i],.......,f(i1,jkweight[i])+kvalue[i],.......)

f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] f(i-1,j-weight[i]) + value[i] f(i1,jweight[i])+value[i] 开始 每一项 都比 f ( i , j − w e i g h t [ i ] ) f(i,j-weight[i]) f(i,jweight[i]) 多了个 v a l u e [ i ] value[i] value[i]

那么 f ( i , j ) = m a x ( f ( i − 1 , j ) , m a x ( f ( i , j − w e i g h t [ i ] ) + v a l u e [ i ] ) ) = m a x ( f ( i − 1 , j ) , f ( i , j − w e i g h t [ i ] + v a l u e [ i ] ) ) f(i,j) = max(f(i-1,j) , max(f(i,j-weight[i])+value[i])) = max(f(i-1,j),f(i,j-weight[i]+value[i ])) f(i,j)=max(f(i1,j),max(f(i,jweight[i])+value[i]))=max(f(i1,j),f(i,jweight[i]+value[i]))

/*
01背包:     f[i][j] = max(f[i-1][j],f[i-1][j-weight[i]]+value[i])
完全背包     f[i][j] = max(f[i-1][j],f[i][j-weight[i]]+value[i])
*/

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e3 + 10;
int w[N],v[N];
int n,m;
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++){
        cin >> w[i] >> v[i]; 
    }
    f[1][0] = 0;
    for(int i=1;i<=n;i++){
        for(int j=0;j<=m;j++){
            f[i][j] = f[i-1][j];
            if(j>=w[i]) f[i][j] = max(f[i-1][j],f[i][j-w[i]]+v[i]);
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

Huffman树

在这里插入图片描述
其主要的时间开销来自于一开始的排序活动。
在这里插入图片描述

摊还分析

摊还分析
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

红黑树

红黑树介绍
红黑树介绍
有n个节点的红黑树的
最大高度是2log(n+1)
最小高度是log(n+1)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

区间树

区间树
线段树

二项堆

相关博客
二项堆相关博客

斐波那契堆

斐波那契堆的势函数:
在这里插入图片描述
斐波那契堆
在这里插入图片描述
在这里插入图片描述

最大流

视频讲解

零碎知识点

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新城里的旧少年^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值