渐进符号
基本定义
注意下o ω的定义,当n趋于正无穷时,
f(n)远小于g(n)此时记 f(n)=o(g(n))
f(n)远大于g(n)此时记f(n)=ω(g(n))
所以上述这个题是D错了
例题1:
T3(n) = Ω(T1(n))
因为: T1 = 30logn. T3 = 10log3n
则 10log3n >= C * 30logn
例题2:
两个算法的时间复杂度是,T1(n) = 10n^2
T2(n) = 32^n
则 T1(n) = O(T2(n))
例题3:
分治法
动态规划
矩阵链乘问题
最长公共子序列问题
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char[] str1 = text1.toCharArray();
char[] str2 = text2.toCharArray();
int n = str1.length;
int m = str2.length;
int[][] dp = new int[n + 1][m + 1]; //dp[i][j]表示以str1[i] str2[j]结尾的最长公共子序列
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
if(str1[i-1] == str2[j-1]) dp[i][j] = Math.max(dp[i][j],dp[i-1][j-1] + 1);
}
}
return dp[n][m];
}
}
钢条切割问题
相关说明
时间复杂度是
O
(
n
2
)
O(n^2)
O(n2)
装配线调度算法
最优二叉查找树
贪心法
任务调度问题
单处理机上带截止时间和惩罚的任务调度问题
算法实现
这个算法的时间复杂度是
O
(
n
2
)
O(n^2)
O(n2)的
活动选择问题
正确方法:最早结束的活动优先
时间复杂度是
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)算法的瓶颈在排序上
01背包
import java.util.*;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int[] v = new int[n+1];
int[] w = new int[n+1];
for(int i = 1; i <= n; i++){
v[i] = sc.nextInt();
w[i] = sc.nextInt();
}
int[][] f = new int[n+1][m+1]; //f[i][j]表示从1~i个物品中选择最大不超过j容量的最大方案
for(int i = 1; i <= n; i++){
for(int j = 0; j <= m; j++){
f[i][j] = f[i-1][j];
if(j >= v[i]) f[i][j] = Math.max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
}
System.out.println(f[n][m]);
}
}
完全背包
完全背包问题每个东西可以用无限次
01背包每个东西只能用一次
f
(
i
,
j
)
f(i,j)
f(i,j) 从前
i
i
i个物品中选总体积不超过j的最大价值方案
01背包问题是 把
f
(
i
,
j
)
f(i,j)
f(i,j) 分为 选第
i
i
i 个物品 和 不选第
i
i
i 个物品
完全背包问题是分成 选 0 个第
i
i
i 个物品,选1个第
i
i
i个物品…一直到选
k
k
k个第
i
i
i个物品…
选
0
0
0个第
i
i
i个物品
f
(
i
,
j
)
=
f
(
i
−
1
,
j
)
f(i,j) = f(i-1,j)
f(i,j)=f(i−1,j)
选
k
k
k个第
i
i
i个物品的话
f
(
i
,
j
)
=
m
a
x
(
f
(
i
−
1
,
j
)
,
f
(
i
−
1
,
j
−
w
e
i
g
h
t
[
i
]
)
+
v
a
l
u
e
[
i
]
,
.
.
.
.
.
.
.
,
f
(
i
−
1
,
j
−
k
∗
w
e
i
g
h
t
[
i
]
)
+
k
∗
v
a
l
u
e
[
i
]
,
.
.
.
.
.
.
.
)
f(i,j) = max(f(i-1,j), f(i-1,j-weight[i]) + value[i], ... .... , f(i-1, j - k*weight[i]) + k*value[i] , ....... )
f(i,j)=max(f(i−1,j),f(i−1,j−weight[i])+value[i],.......,f(i−1,j−k∗weight[i])+k∗value[i],.......)
f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j) = max(f(i-1,j), f(i-1,j-weight[i]) + value[i], ... .... , f(i-1, j - k*weight[i]) + k*value[i] , ....... ) f(i,j)=max(f(i−1,j),f(i−1,j−weight[i])+value[i],.......,f(i−1,j−k∗weight[i])+k∗value[i],.......)
令 j = j − w e i g h t [ i ] j = j - weight[i] j=j−weight[i], 带入那么有
f ( i , j − w e i g h t [ i ] ) = m a x ( f ( i − 1 , j − w e i g h t [ i ] ) , f ( i − 1 , j − 2 ∗ w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + ( k − 1 ) ∗ v a l u e [ i ] , f ( i − 1 , j − ( k + 1 ) ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j-weight[i]) = max(f(i-1,j-weight[i]) , f(i-1,j-2*weight[i])+value[i] , ... ... , f(i-1,j-k*weight[i])+(k-1)*value[i] , f(i-1,j-(k+1)*weight[i])+k*value[i], .... ... ) f(i,j−weight[i])=max(f(i−1,j−weight[i]),f(i−1,j−2∗weight[i])+value[i],......,f(i−1,j−k∗weight[i])+(k−1)∗value[i],f(i−1,j−(k+1)∗weight[i])+k∗value[i],.......)
#include<algorithm>
#include <iostream>
using namespace std;
const int N = 10010;
int n,m;
int v[N],w[N];
int f[N][N];
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++) cin >> v[i] >> w[i];
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k*v[i]<=j;k++){//这里是k*v[i]<=j别写成m了
f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
}
}
}
cout << f[n][m];
return 0;
}
然后可以进一步优化
可以看到 f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] , . . . . . . . , f ( i − 1 , j − k ∗ w e i g h t [ i ] ) + k ∗ v a l u e [ i ] , . . . . . . . ) f(i,j) = max(f(i-1,j), f(i-1,j-weight[i]) + value[i], ... .... , f(i-1, j - k*weight[i]) + k*value[i] , ....... ) f(i,j)=max(f(i−1,j),f(i−1,j−weight[i])+value[i],.......,f(i−1,j−k∗weight[i])+k∗value[i],.......)
从 f ( i − 1 , j − w e i g h t [ i ] ) + v a l u e [ i ] f(i-1,j-weight[i]) + value[i] f(i−1,j−weight[i])+value[i] 开始 每一项 都比 f ( i , j − w e i g h t [ i ] ) f(i,j-weight[i]) f(i,j−weight[i]) 多了个 v a l u e [ i ] value[i] value[i]
那么 f ( i , j ) = m a x ( f ( i − 1 , j ) , m a x ( f ( i , j − w e i g h t [ i ] ) + v a l u e [ i ] ) ) = m a x ( f ( i − 1 , j ) , f ( i , j − w e i g h t [ i ] + v a l u e [ i ] ) ) f(i,j) = max(f(i-1,j) , max(f(i,j-weight[i])+value[i])) = max(f(i-1,j),f(i,j-weight[i]+value[i ])) f(i,j)=max(f(i−1,j),max(f(i,j−weight[i])+value[i]))=max(f(i−1,j),f(i,j−weight[i]+value[i]))
/*
01背包: f[i][j] = max(f[i-1][j],f[i-1][j-weight[i]]+value[i])
完全背包 f[i][j] = max(f[i-1][j],f[i][j-weight[i]]+value[i])
*/
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e3 + 10;
int w[N],v[N];
int n,m;
int f[N][N];
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++){
cin >> w[i] >> v[i];
}
f[1][0] = 0;
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
f[i][j] = f[i-1][j];
if(j>=w[i]) f[i][j] = max(f[i-1][j],f[i][j-w[i]]+v[i]);
}
}
cout << f[n][m] << endl;
return 0;
}
Huffman树
其主要的时间开销来自于一开始的排序活动。
摊还分析
例题
红黑树
红黑树介绍
红黑树介绍
有n个节点的红黑树的
最大高度是2log(n+1)
最小高度是log(n+1)
区间树
二项堆
斐波那契堆
斐波那契堆的势函数:
斐波那契堆
最大流
零碎知识点