方阵函数的计算

方阵函数的计算一般有两种方式:Jordan标准型法和最小多项式法。

一、Jordan标准型法

假设存在矩阵A,有A=PJP^{-1}.我们已知存在f(A)=Pf(J)P^{-1}.也就是若对矩阵A函数计算,可以通过先对它的相似Jordan标准型J进行相同函数计算,之后左乘变换矩阵P,右乘变换矩阵P^{-1}得到需要的结果。

这是因为对于Jordan标准型而言,函数计算存在以下方便的计算方法:

也就是对Jordan标准型矩阵的计算可以转换为对对角元λ的代数计算,矩阵计算变代数计算,显然简化了许多。之后再左乘变换矩阵P,右乘变换矩阵P^{-1}得到需要的结果。

例题:有矩阵A=\left ( \right ),求f(A)

解:①先通过|λE-A|=0\left | \lambda E-A \right |=0,求解其特征值λ1λ2=λ3,……(注意,这里边一般存在重根,若不存在重根那就意味着可以直接相似为对角阵,那样比Jordan标准型更简单了)。

②针对不同特征值求解其特征向量\left | A-\lambda E \right |=0,一般对于重根会出现几何重数小于代数重数,意味着只能相似为Jordan标准型,求出其Jordan标准型,(具体求法在前面中讨论过)。

③针对Jordan标准型按照上图方法求出其结果(切记对不同Jordan块都得求出,别忘记了)

④ 按照f(A)=Pf(J)P^{-1}求出f(A)的值即可。

该方法计算难点:

  1. 相似变换矩阵P及其逆矩阵P^{-1}难求
  2. 3个矩阵相乘Pf(J)P^{-1}计算繁琐。

二、最小多项式法

注意:(1)满足条件里f(λ)中的λ为方阵A的特征值。

(2)f(λ)求导的次数为相应特征值代数重数减1

(为什么是\left ( \displaystyle \lambda -\lambda _{i} \right )^{m_{i}}m_{i}减1呢,其实是为了构造下面所示的Jordan块函数相等,已用红色标注出来,太巧妙了。

为什么要用最小多项式作为已知首选条件呢,这是因为:最小多项式中\left ( \displaystyle \lambda -\lambda _{i} \right )^{m_{i}}m_{i}的大小限制了针对\lambda _{i}子Jordan矩阵J_{i}中Jordan块J_{i1},J_{i2},....,J_{in}的最高阶m_{i}

由定义1的条件可以看出,

这是因为

由此,可知计算方阵A的f(A)函数的另一种方法是构建一个多项式g(λ)与f(λ)在方阵A上谱一致就可以,这样将f(A)计算转化为了g(A)的计算。

计算方法:

之后将f(A)计算转化为了g(A)的计算。

例题:有矩阵A=\left ( \right ) ,求f(A)

①求A的特征多项式,由特征多项式求出其最小多项式。(与其说是求出不如说是试出最小多项式)

②针对最小多项式构造一个多项式:

注意上面的最高次数为m-1,m为最小多项式的所有指数和。

根据

求出a0,a1,a2……an,带入g(λ)函数中,之后将方阵A带入g(λ)函数中求解。

总结:运用泰勒展开方法计算方阵函数,由于收敛域会缩小函数的范围,存在不可计算的现象,运用Jordan标准型或最小多项式法计算方阵函数可以有效避免。

(非常感谢杨教授的网课,受益匪浅!!!)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值