Graphviz库(基于Anaconda)下载安装,以及测试(最全图文教程)

本文介绍了如何下载安装Graphviz,包括在Anaconda环境下创建虚拟环境,激活并安装所需库。通过实例展示了利用Graphviz和Keras的VGG16模型生成网络结构图。还提到了pydotplus和tensorflow在不同情况下的使用需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. Graphviz

Graphviz - Graph Visualization Software(图形可视化软件)

官方网址:Graphviz

个人理解:针对神经网络来说,这个库可以用来显示神经网络结构图形(如下图为Keras Applications中的VGG16网络结构图),作用类似model.summary()

 二. Graphviz下载安装

首先先前往graphviz官网下载对应系统的exe文件,然后运行这个exe文件进行安装 

安装时选择这个会自动添加到系统环境变量中去

上图表示graphviz安装成功。

1.打开Anaconda Prompt(anaconda3)

2.创建conda虚拟环境

输入:conda create  -p=F:\conda_environment\graphviz-test python=3.9

-p 后面表示创建的虚拟环境的路径

python=3.9 表示使用conda里面3.9版本的python解释器

 Proceed ([y]/n)?   输入:y

表示在路径F:\conda_environment\graphviz-test 建好了conda虚拟环境

输入:conda info -e

查看创建好的虚拟环境

表示已经成功创建好虚拟环境。

接下来需要激活我们刚才创建的虚拟环境(F:\conda_environment\graphviz-test),这样我们才能在这个环境中下载安装我们所需要的库。

输入:conda activate F:\conda_environment\graphviz-test

激活环境

 环境激活成功后前面(base)将会变成你所激活的环境(F:\conda_environment\graphviz-test)

3.下载Graphviz

首先先下载pydotplus库

 输入:pip install pydotplus

再输入:pip install graphviz

 这样就安装好graphviz库了!!!

三.测试

打开Pycharm创建新项目

1.创建项目的路径:F:\code\code_python\graphviz-1

2.选择:先前配置的解释器

3.点击“添加解释器”——“添加本地解释器”(这时候就可以选择我们前面刚创建好的conda 虚拟环境里面的解释器作为这个项目的python解释器)

下一步就是选择解释器

1.选择:Conda环境

2.选择:使用现有环境

3.选择刚才创建的虚拟环境 F:\conda_environment\graphviz-test

4.点击“确定”

此时已经给项目配置好解释器,最后点击“创建”即可。

创建好项目后新建一个py文件

输入测试代码:

from keras.applications import VGG16
from keras.utils import plot_model
from IPython.display import Image
conv_base=VGG16(weights='imagenet',
                include_top=True)
# conv_base.summary()
plot_model(conv_base,show_shapes=True,to_file='VGG16.png')
Image(filename='VGG16.png')

此时需要在终端处进行tensorflow和IPython库的安装即可运行代码

首先先在终端激活前面创建的虚拟环境:F:\conda_environment\graphviz-test

在终端处输入:conda activate F:\conda_environment\graphviz-test

即可激活虚拟环境

然后再这个虚拟环境中用清华镜像源进行安装tensorflow和IPython库

输入:pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple

输入: pip install IPython -i https://pypi.tuna.tsinghua.edu.cn/simple

 此时即可运行代码

输入: python ./1.py

即可

运行后再项目文件夹下就会出现此文最开始的那张图片。至此完成graphviz库的安装以及测试。(测试也可以网上找其他代码进行验证)

 注意:

1.最开始pip install pydot  和 pip install graphviz ,但是一直会出现下面这个错误。最后在网上找到资料说python3.6版本以上不适用pydot,需要下载pydotplus库,下载完pydotplus后再运行测试代码就可以了。

如果只是针对上面使用的测试代码(上面那个代码是我在跟着学习视频敲出来的测试代码,是一个老师自己写的),其实只需要pip了pydotplus就可以运行代码了,而不需要下载graphviz。

但是针对网上其他的graphviz测试代码则只需要pip下载graphviz,pydotplus这个看情况下载,我测试了一个网上代码竟然不需要下载pydotplus也可以运行,所以看情况而定。

2.如果直接在终端pip install  keras,然后运行代码会报错没有模块‘tensorflow',需要直接下载tensorflow库(可能原因是keras是在tensorflow基础上开发出来的,有些文件在tensorflow中,而不在keras,所以直接下载tensorflow也包含了keras所需要的文件),就不会报错了。

最后,这是小白第一次自己写csdn博客,目的是为了将自己最近踩过的坑记录下来,避免以后忘了又要重新找答案,以上所有内容为个人愚见,如有不对或者理解不到位的地方,恳请各位大佬指点,万分感谢!

Graphviz是一个用于绘制图形的开源工具。根据引用\[1\],安装Graphviz的步骤如下: 1. 首先,点击下一步,选择接受协议,并进入安装界面。 2. 在安装界面中,选择安装位置,并点击安装按钮进行安装。 3. 安装完成后,会显示安装完成的界面。 根据引用\[2\],在命令行或者notebook中安装graphviz可以使用以下命令: ``` pip install graphviz ``` 如果在安装过程中遇到了错误,可以尝试以下解决方法: - 如果使用的是Python 3.6版本以上,可以尝试安装pydotplus来替代pydot。可以使用以下命令安装pydotplus: ``` pip install pydotplus ``` - 如果仍然遇到问题,可以参考Graphviz官网的下载页面\[3\],下载对应版本的exe文件,并双击exe文件进行安装。 希望以上信息对您有帮助。 #### 引用[.reference_title] - *1* *3* [安装和配置graphviz](https://blog.csdn.net/weixin_43819931/article/details/124176578)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Graphviz(基于Anaconda下载安装,以及测试最全图文教程)](https://blog.csdn.net/weixin_44984048/article/details/128524409)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值