Java 自带性能监控工具:监视和管理控制台 jconsole 的使用

1. 前言

Java 自带性能监控工具:监视和管理控制台 jconsole,它可以提供 Java 某个进程的内存、线程、类加载、jvm 概要以及 MBean 等的实时信息。

2. JVM 一些参数

在启动 jconsole 之前我们先来回顾一下 JVM 的一些主要参数:
-Xms 初始/最小堆内存大小
-Xmx 最大堆内存大小
-Xmn 年轻代大小
-XX:NewSize 年轻代大小
-XX:MaxNewSize 年轻代最大值
-XX:NewRatio 年老代与年轻代比值
-XX:MaxPermSize 持久代最大值
-XX:PermSize 持久代初始值
有些资料说,Xms、Xmx 设置的是 JVM 内存大小,是不对的,JVM 除了留给开发人员使用的堆内存之外还有非堆内存。
读者可能发现,有三种方式可以划分年轻代大小:-Xmn 方式、-XX:NewSize + -XX:MaxNewSize 方式、-XX:NewRatio 方式。三种都可以,优先级从高到低依次是 -XX:NewSize + -XX:MaxNewSize 方式、-Xmn 方式、-XX:NewRatio 方式,也就是说配置了前面优先级高的后面的优先级低的就被覆盖掉了。

3. 本机启用 jconsole 以监控 Java 进程

在jdk/bin目录下直接点击 jconsole.exe,即可打开 Java 监视和管理控制台
在这里插入图片描述

本地进程列表里显示了所有本地执行中的 Java 进程,双击你感兴趣的那个进程(比如 PID 为 8504 那个),即可对该进程进行监控了:
双击你感兴趣的那个进程

在这里插入图片描述

4. 远程监控 Java 进程

要对 Java 进程进行远程监控,在启动它的时候需要启用 JMX。
以远程主机上的 tomcat 为例,先为 jmx 找一个可用的远程端口,比如 9999:
在这里插入图片描述
No news is good news~在 %TOMCAT_HOME%/bin/catalina.sh 文件的前面加上以下配置:

JAVA_OPTS="-Xms1024m -Xmx2048m -XX:MaxPermSize=128m -Dcom.sun.management.jmxremote.port=9999 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false"

如图
在这里插入图片描述

tomcat的JAVA_OPTS配置

这样写在 tomcat 关闭的时候(执行 %tomcat%/bin/shutdown.sh)会报端口已使用异常:

错误: 代理抛出异常错误: java.rmi.server.ExportException: Port already in use: 9999; nested exception is:
java.net.BindException: 地址已在使用

这是因为 tomcat 在启动、停止的时候都会执行 JAVA_OPTS 配置。这样就只能使用 kill -9 来关闭 tomcat 了…

解决办法是把监控配置写在 CATALINA_OPTS 里:

JAVA_OPTS="-Xms1024m -Xmx2048m -XX:MaxPermSize=128m"
CATALINA_OPTS="-Dcom.sun.management.jmxremote.port=9999 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false"

就可以了。CATALINA_OPTS 配置只是在 tomcat 启动的时候执行。
然后重启 tomcat,在本机打开 Java 监视和管理控制台,“远程进程” 输入远程主机名和 jmx 端口号:

jmx 远程连接

点击 “连接” 按钮,即可对远程主机上的 tomcat 进行实时监控了:
即可对远程主机上的 tomcat 进行实时监控了

在这里插入图片描述

5. jconsole 提供的一些有用信息

接着第 4 步的案例往下看。

5.1. JVM 设定信息是否起作用检查

点击 “VM 概要” 可以查看到刚才我们设定的 JAVA_OPTS 的一些参数已经奏效了:
在这里插入图片描述

5.2. tomcat 线程池、自定义线程池数量情况实时监控

还在为 tomcat 线程池的神秘面纱而头疼?还在为自己定义的线程池 “黑盒” 一般而苦恼?看看下图:
在这里插入图片描述

我们的 tomcat 刚启动,从上图可以看出只有一个 http-8080-Acceptor-0 线程,我们去访问一下我们的项目,然后再回来看看:
在这里插入图片描述

http-8080 线程一下子增长到了 8 个。是不是一切一目了然,尽在掌握之中?

5.3. 内存使用实际消耗

点击 Java 监视和管理控制台 “内存” 叶项,可以看到 tomcat 堆内存的使用情况:
在这里插入图片描述

图表里有很多选项:
图表里有很多选项

我们看一下 Eden 区:
Eden区
在这里插入图片描述

Eden 区基本和整个堆内存的走势差不多。再看 Survivor 区:
在这里插入图片描述

Survivor 区在较短时间内的走势相对平稳。再看 Old Gen 区:
再看 Old Gen 区

这个走势更加平稳,而且对比 Survivor 区、Old Gen 区两张图,可以很明显地看出,在大约 19:58 那个时刻有将一批对象从 Survivor 区移到 Old Gen 区。最后看 Perm Gen 区。
这个走势最平稳了。可以明显看出,在大约 19:58,在我们访问一下我们的项目的时候,一些新的 class 等静态资源加载到了 JVM 中。5.4 的加载类数的图也证实了这一点。

5.4. tomcat 加载类的情况

tomcat 加载类的情况

6. 配合 jmap 的使用

在这里插入图片描述

先找到我们 tomcat 进程的 PID 是 13863,然后执行 jmap -heap 13863:
在这里插入图片描述

Heap Configuration 里列的基本就是我们刚才配的那些,比如 MaxHeapSize 是 2048 MB,MaxPermSize 是 128 MB。这个和 5.1 里的是一样的。

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页