2019最新《Python机器学习与量化交易项目实战教程》

『课程目录』: 
│  01基本预测
│  02第一节-简介与Python安装
│  03第一节-Python数据结构
│  04第二节-Python for Finance 常用packages 学习 I
│  05第三节-Python for Finance 常用packages 学习 II
│  06第四节-金融数据建模与预测_风险测度因子
│  07第五节-事件驱动的交易策略和实施
│  08第五节课-统计交易策略和实施
│  09第五节课-Parameter optimization(参数优化)
│  10第六节-贝叶斯估计 |
│  11第六节-贝叶斯例子和线性模型
│  12第六节-贝叶斯随机波动率
│  13第七节-金融时间序列分析-I 
│  14第八节-金融时间序列-II-协整性
│  15第八节-金融时间序列-II-state model
│  16第八节-金融时间序列-II-卡尔曼滤波 `
│  17第八节-金融时间序列-II-Hidden Markov Models
│  18第九节-线性回归
│  19第九节-shrinkage regression
│  20第九节-决策树 
│  21第九节-boosting&bagging
│  22第十节-逻辑回归
│  23第十节-判别分析
│  24第十节-SVM 和交叉验证的模型选择
│  25第十一节-Introduction to Clustering
│  26第十一节- Neural network
│  27第十一节-主成分分析
│  28第十二节-机器学习于量化交易中的应用IV
│  29第十三节 Python for ODE PDE numerical methods (Python for 偏微分方程数值解)
│  30第十四节 Python衍生品定价-I-MC
│  31第十四节 美式期权和欧式期权定价
│  32第十五节 常见蒙特卡罗方差降低方法与期权定价
│  33第十五节 重点抽样级数和测度变化
│  34第十五节 信用风险的IRC模型和高斯核
│  35第十六节 面试I
│  36第十六节 简历和面试II
│  
└─课件


下载地址:百度网盘

发布了5 篇原创文章 · 获赞 2 · 访问量 2211
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览