自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(109)
  • 收藏
  • 关注

原创 7个面向对象常用原则的中英文名、别名及定义

SRP,OCP,LSP,DIP,ISP,CRP,LoD.

2020-11-30 21:44:58 2

原创 三类常见软件质量(Quality Attribute)属性的通俗解释

软件质量属性即衡量软件质量的属性。分为产品质量和过程质量两大类,其中产品质量又分为外部质量和内部质量。

2020-11-26 20:42:24 9

原创 可维护性、可复用性和可扩展性的区别

三者是不同的软件质量属性。可维护性、可复用性又被认为是两个最重要的用于衡量软件质量的属性。在《Java设计模式》一书中对可维护性的定义为:指软件能够被理解、改正、适应及扩展的难易程度。对可复用性的定义为:指软件能够被重复使用的难易程度。可见可维护性和可复用性是区分开的。但一般说到可维护性指的是改正性维护,根据修复一个问题所花的平均时间和修复正确的百分比来衡量。广义上的可维护性也包括扩展可维护性,此时可扩展性是可维护性的一部分。(可以想见可理解性也是可维护性的一部分)改正侧重改,扩展侧重增。下

2020-11-20 10:11:06 23

原创 hung-yi lee_p22_无监督学习:词嵌入

文章目录原视频地址:添加链接描述输入是一个词输出是一个向量整个过程无监督用来训练的是一堆文章精神:根据一个词汇的上下文来理解它具体:1.count based两个词经常一起出现,认为它们是相似的2.prediction-based给神经网络一个词,神经网络输出下一个词给两个词:不把它们接在一起,而是共享参数词向量模型只有一个隐藏层,不是深度学习为什么:减小计算量,提高训练效率...

2020-11-18 21:24:47 11

原创 白盒测试的3中主要方法(cont.)

包括:逻辑覆盖,基本路径,循环路径覆盖。

2020-11-05 10:13:05 31

原创 hung-yi lee_p17_卷积神经网络

文章目录背景:卷积层池化层摊平Keras背景:DNN拿掉一些参数就成CNN为什么可以这样做每一个神经元只需要图中的一部分就可以识别出想要的模式更小的区域意味着更少的参数同样的模式也许出现在图片的不同位置这时参数可以共享对像素进行缩减(例如把奇数行偶数列的都删去)对图像识别不会有太大影响这无疑也能减少参数CNN的架构如下图所示其中卷积层和池化层要重复多少次,在训练之前就得决定拿掉参数的3种方式分别对应以下层卷积层如上图,左侧是一张6x6的黑白图像,1表示有像素0表示

2020-11-01 21:52:11 45 4

原创 hung-yi lee_p13_反向传播

可以说反向传播是梯度下降在神经网络中的实现。读懂本文要注意正向和逆向思维的转换。

2020-11-01 13:54:56 40

原创 黑盒测试9种常用方法(cont.)

包括:等价类划分、边界值分析(BVA)、因果图、判定(决策)表、组合覆盖(pairwise)、正交表法(OATS)、功能图法、场景设计法、错误推测法。其中易考:等价类划分、BVA和场景法。其中同时属于白盒测试的有:BVA,功能图法。

2020-10-29 10:01:40 604

原创 hung-yi lee_p15_机器学习为什么要有“深度”

文章目录疑问-为什么要那么多层模块化在语音识别中的应用人类语言的架构语音识别step 1疑问-为什么要那么多层一层做的足够多,就可以了如果参数总数一定,比较两种神经网络矮胖vs.高瘦结果显示:即使参数更少,高瘦的网络出错率更低为什么呢?做DL其实就是在做模块化例如,现在做这样一个影响分析:长发男,长发女,短发男,短发女,需要四个分类模型但长发男的数据过少,会造成训练出的模型性能较弱(weak)为了解决这个问题,我们可以把问题切分成两个,这样任一数据集中数据数量都不会太少这样

2020-10-28 21:42:46 14

原创 hung-yi lee_p12_深度学习简介

文章目录三个步骤step 1fully connect feedforward network神经网络原理从非DL到DL什么变了step 2step 3backpropagation注意这是篇头重脚轻的博客。大部分都在讲step1,2、3是飞快过去。三个步骤step 1许许多多的逻辑回归(神经元)模型组成的神经网络不同的连接方式导致不同的网络结构网络参数蕴含在神经元模型中与之前的线性回归,生成模型,判别模型不同的是,需要设计连接方式,之前是没有这个步骤的fully connect fee

2020-10-28 21:02:16 70

原创 电子商务概述(第1-6课时)

文章目录电子商务的定义电子商务发展的三个阶段电子商务发展的五个趋势电子商务的八个类别B2BB2CC2CC2BB2MM2CB2AC2A电子商务的定义Electronic Commerce(EC)狭义上来说,EC是主要利用Internet从事商务活动,广义上来说,EC是使用各种电子工具从事商务活动。记住一句话:电子是手段,商务是目的。电子商务发展的三个阶段电子邮件阶段信息发布阶段电子商务阶段电子商务发展的五个趋势电子商务常态化融合物流供应链融合搜索引擎(很多EC背后都有一个强大的搜索引擎

2020-10-27 22:13:31 40

原创 STARTUP报错:ORA-00205: error in identifying control file, check alert log for more info

问题描述

2020-10-26 09:39:43 27

原创 lsnrctl status报错Instance “orcl“, status UNKNOWN

问题描述

2020-10-25 20:48:08 41

原创 hung-yi lee_p11_逻辑回归

step1 Function Set要找的是一个几率,对应不同的类别如果用高斯分布,该几率可以表示成sigma of z,其中z为因此函数集也就是许许多多含有不同w,b的函数图像化模型(图中z的表示错了)逻辑回归与线性回归对比step2 goodness of a function假设有N笔数据组成的测试数据,每笔分属于某个类别并假设测试数据的结果是刚才的概率生成函数产生的注:这里的概率生成函数指的是给定w和b,就可以算出概率生成函数产生以上N笔数据组成的测试数据的几率(

2020-10-25 17:30:50 22

原创 startup mount报错:invalid value given for the diagnostic_dest init.ora parameter

问题描述

2020-10-25 11:25:14 40

原创 TNS-01201: Listener cannot find executable /u01/oracle/bin/extproc for SID orcl Listener failed to

问题描述

2020-10-24 21:52:52 32

原创 CentOS报错:TNS-12541: TNS:no listener TNS-12560: TNS:protocol adapter error TNS-00511: No listener

问题描述

2020-10-24 21:40:14 48

原创 hung-yi lee_p10_分类/概率生成模型

关键词:高斯分布,最大似然法

2020-10-24 17:06:00 25

原创 hung-yi lee_p5-7_Gradient Descent(梯度下降)

本文介绍了梯度下降这一模型训练方法的原理,接着提供了三种改进策略,最后点明了梯度下降方法的局限性。

2020-10-22 21:32:01 35

原创 hung-yi lee_p4_Bias And Variance

本文希望优化线性模型,分析了造成机器学习误差的两大原因bias和variance,并就如何减小两者作出平衡给出了解决方案。

2020-10-22 17:26:41 35

原创 hung-yi lee_p3_线性回归

以计算宝可梦进化后的CP值为例,介绍了线性回归这一机器学习方法,涉及的概念有:损失函数,梯度下降,过拟合,学习率,正则项。

2020-10-22 16:49:30 40

原创 静态测试与测试计划

文章目录1 静态测试2 评审2.1 what2.2 why2.3 形式2.4 分类2.4.1 属于软件测试的部分2.4.2 属于软件质量保证的部分:3 需求测试3.1 why3.2 需求中可能存在的问题3.3 需求文档检查要点3.3.1 完整性3.3.2 正确性3.3.3 一致性3.3.4 可行性3.3.5 无二义型3.3.6 健壮性3.3.7 必要性3.3.8 可测试性3.3.9 可修改性(?)3.3.10 可跟踪性3.4 需求文档检查列表4 测试计划4.1 测试计划何时做4.2 应用场景1 静态测试

2020-10-21 16:59:12 34

原创 软件生命周期中出现的文档名称(cont.)

需求相关:需求规格说明书测试相关:测试计划书,测试报告

2020-10-21 16:30:17 11

原创 验证(verification)和确认(validation)

验证:看软件产品是否符合需求文档确认:看软件产品是否满足用户需求整个软件测试做的事是验证

2020-10-21 16:21:42 16

原创 机器学习中的三对性能度量参数

文章目录分类结果混淆矩阵错误率和精度错误率:分类错误的样本数占样本总数的比例精度:分类正确的样本数占样本总数的比例关系:两者之和为1查准率P和查全率R通俗解释:信息检索场景下,我们经常会关心“检索出的信息中有多大比例是用户感兴趣的”以及“用户感兴趣的信息有多少被查出来了”,“查准率P”和“查全率R”是适用于此类需求的性能度量。关系:两者是一对矛盾的度量。除非极简单的任务,一般两者不会双高。相关图:P-R曲线(查准率-查全率曲线)真正例率TPR和假正例率FPR相关图:ROC曲线

2020-10-21 15:59:57 79

原创 统一建模语言——UML(第9-20课时)(cont.)

主要包括需求模型:用例图,状态图,活动图,顺序图。设计模型:类图,包图,组件图,部署图。其中能用于正向工程的是:状态图,类图。其中顺序图也可用作设计模型。

2020-10-19 09:08:32 45

原创 物联网技术与应用(第1-2课时)(cont.)

本节重点 【1】物联网的定义 【2】RFID的3个组成部分【3】物联网的三层架构及相关层内容【4】给一个标签,逻辑、流程?【5】位置感知?

2020-10-15 16:40:31 26

原创 通用软件测试的6个角度

之后的课程都会围绕此展开以QQ邮箱为例外观界面测试页面外观背景颜色、字体、字体格式、页面图案、动画、窗体布局功能测试输入正确的用户名和密码可以登录,其他都不可性能测试输入完邮箱的用户名和密码并单击登录按钮后,用户等待多长时间可以登录邮箱?安全性测试公用电脑登录QQ邮箱,进行了推出操作,但QQ号留在了机器上。兼容性测试不同浏览器上易用性测试用户视角,是否顺畅、是否易操作...

2020-10-14 21:12:03 45

原创 人工神经网络是如何实现存算一体的

下图是一个神经元模型可以将其抽象为一个数学函数y=f(w1x1+w2x2+…+wn*xn+b)。也就是这个模型同时涵盖输入输出和进行计算。

2020-10-14 09:17:22 96

原创 软件体系结构风格之C/S,三层C/S,与BS

摘要 本文内容如题。C/S的物理结构,其发展历程为(1)->(3)->(2),本文接下来要介绍的C/S为(3),即胖客户端瘦服务器,接下来要介绍的三层C/S为(2),即客户端不胖不瘦。C/S软件体系结构背景:基于资源不对等,且为实现共享而提出来的主要组成部分:数据库服务器、客户应用程序和网络。注意到,服务端只管数据库。任务分配:服务器:数据库安全性的要求;数据库访问并发性的控制;数据库前端的客户应用程序的全局数据完整性规则;数据库的备份和恢复。客户应用程序:提供用

2020-10-12 20:43:29 67

原创 软件体系结构风格(第5-8课时)

摘要:本文给出软件体系结构风格的定义,并介绍几种常用风格:管道过滤器、数据抽象和面向对象组织,基于事件的隐式调用,分层系统,仓库系统,过程控制环路软件体系结构风格是什么描述特定系统组织方式的惯用范例。组织方式即静态表述的样例。惯用范例是反应众多系统共有的结构和语义,独立于实际问题。体系结构风格指导如何将各个模块和子系统有效地组织成一个完整的系统。管道/过滤器风格该风格的构件被称为过滤器,读输入的数据流,经过内部处理,产生输出数据流。该风格的连接件被称为管道,将一个过滤器的输出传入到另

2020-10-12 20:33:00 22

原创 大型数据库入门

本文介绍大型数据库的概念及其性能决定因素,以及如何优化性能。什么是大型数据库-没有一个标准定义-包含非常多元组(数据库行)的数据库,或者占用非常大的物理文件系统存储空间的数据库。-占据TB量级的磁盘存储,包含数十亿表行。为什么需要大型数据库今天企业管理的数据总量大型数据库性能的决定因素OS<DBMS<硬件<应用<架构如何提高大型数据库性能可分为以下四个步骤:~应用层面的优化~数据库设计与配置优化~操作系统和硬件优化~架构的优化4.1 应用层面的优化

2020-10-12 10:07:10 20

原创 总结:SQL的优缺点及与NoSQL对比

SQL在这里指的是关系型数据库,NoSQL指元组存储?

2020-10-12 09:34:45 34

原创 数据库管理系统的组成和结构

2020-10-12 09:03:40 43

原创 继续漫谈软件测试(第3-4课时)

本篇内容关于【1】缺陷(bug)的类型【2】软件测试与SQA的关系【3】软件测试的七项基本原则【4】将软件测试按照不同标准进行分类【5】软件测试过程模型

2020-10-10 22:17:11 39

原创 hung-yi lee_p1_机器学习是什么

机器学习就是自动找函式。它很简单,只有三步:确定模型——确定性能度量——找最佳函数。

2020-10-05 12:21:13 48

原创 顶级数据库管理系统的性能比较研究(论文翻译)

本文译自 《A Comparative Study on the Performance of the Top DBMS Systems 》Youssef Bassil LACSC – Lebanese Association for Computational Sciences Registered under No. 957, 2011, Beirut, Lebanon摘要数据库管理系统是当今将数据组织成可以搜索和更新的集合地最可靠的手段。然而,市场上有许多DBMS系统,每个系统在可靠性、可用性、安

2020-10-04 13:15:04 113

原创 软件测试的4W1H(第1-2课时)

1.Why• 通过测试可以发现软件缺陷,进而清除软件缺陷;• 软件中存在缺陷带来的损失是巨 大的——测试的必要性和重 要性。测试是所有工程学科的基本组成单元,是软件开发的重要组成部分。• 测试人员水平高,找到软件问题早 ,更易更正, 产品发布稳定 ,公司赚钱越多…• Improve quality• Reduce cost• Preserve customer satisfaction2.What• 使用人工或自动手段,来运行或测试某个系统的过程。其 目的在于检验它是否满足规定的需求或弄清

2020-10-02 22:07:40 23

原创 对于正交频分复用的异构网络的理解

正交来看百度百科的定义——物理中:运动的独立性,也可以用正交来解释。正交频分复用来看百度百科的定义——将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。关键信息:子信道之间的相互干扰少异.

2020-09-30 09:15:00 322 3

原创 初识软件体系结构(1-4课时)

前四个课时的内容是“软件体系结构概述”。LW老师的讲课带劲,逻辑性强,也接地气,节奏不快不慢,很nice~软件架构师这门课最对口的职业是软件架构师,软件架构师是工作在项目经理和程序员之间,既要懂需求,又要懂技术。一边领着高收入,一边也要承担高风险。一个建筑工程失败,首先被问责的一定是包工头和建筑设计师,不会是某个建筑工人。同样,一个软件项目失败,最先被找的一定是项目经理和架构师。与建筑领域不同的是,一个建筑工人不会因为搬砖又快又好就成为建筑设计师,而一个软件架构师必须成长于一线程序员,起码有几年的

2020-09-29 00:24:35 53

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除