车载双目客流分析算法是整个系统的灵魂其运行在高性能数字信号处理器(TI DSP)中,每秒进行25帧的实时图像分析,客流统计处理算法嵌入式客流分析终端中的DSP处理器,实时采集视频图像,并检测运动目标的特征点(feature points),然后对特征点进行空域上的聚类(Cluster)和时域上的匹配,从而识别运动目标;通过头肩信息、圆心距、行人运动的柔性特征等特征,基鸿运客流分析算法可以准确进行目标分类,准确识别运动目标中的行人;通过对行人目标的实时双向跟踪,可以实现准确的计数和方向的判定。
一、车载双目客流系统检测阶段
第一步:背景模型是车载双目客流分析算法处理的基础,本算法采用帧间差分算法与概率统计模型相结合的方法,能够在各种复杂环境下建立起一副尽可能真实的背景图像,从而为前景目标的提取提供重要基础。在系统中,一个模型可以理解为在一个环境(主要为角度)下,一个“人”特征的集合体。首先在一个固定角度的场景下,取得很多人 的图片,称之为样本,取得足够的样本(一般在十万到一百万之间)后,通过样 本来学习这些特征,得到的参数就是模型,模型集合了训练样本的特点。在遇到 相似场景时,装载相应模型就完成了系统检测的初始化。下图为一个场景下不同 的样本。
第二步:提取特征。为了让模型应用于一个物体,以确定这个物体是不是人, 我们需要提取相应的特征。根据机器自动学习的结果,一个模型 90%的