刷题
235.二叉搜索树的最近公共祖先
题目:给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
-
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
-
输出: 6
-
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
-
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
-
输出: 2
-
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
-
所有节点的值都是唯一的。
-
p、q 为不同节点且均存在于给定的二叉搜索树中。
思路及实现
做过二叉树:公共祖先问题题目的同学应该知道,利用回溯从底向上搜索,遇到一个节点的左子树里有p,右子树里有q,那么当前节点就是最近公共祖先。
那么本题是二叉搜索树,二叉搜索树是有序的,那得好好利用一下这个特点。
在有序树里,如果判断一个节点的左子树里有p,右子树里有q呢?
因为是有序树,所有 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的。即 中节点 > p && 中节点 < q 或者 中节点 > q && 中节点 < p。
那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是p 和 q的公共祖先。 那问题来了,一定是最近公共祖先吗?
如图,我们从根节点搜索,第一次遇到 cur节点是数值在[q, p]区间中,即 节点5,此时可以说明 q 和 p 一定分别存在于 节点 5的左子树,和右子树中。
此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为p的祖先, 如果从节点5继续向右遍历则错过成为q的祖先。
所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[q, p]区间中,那么cur就是 q和p的最近公共祖先。
理解这一点,本题就很好解了。
而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)。
如图所示:p为节点6,q为节点9
可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!
递归法
递归三部曲如下:
-
确定递归函数返回值以及参数
参数就是当前节点,以及两个结点 p、q。
返回值是要返回最近公共祖先,所以是TreeNode 。
-
确定终止条件
遇到空返回就可以,其实都不需要这个终止条件,因为题目中说了p、q 为不同节点且均存在于给定的二叉搜索树中。也就是说一定会找到公共祖先的,所以并不存在遇到空的情况。
-
确定单层递归的逻辑
在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭又闭)
那么如果 cur->val 大于 p->val,同时 cur->val 大于q->val,那么就应该向左遍历(说明目标区间在左子树上)。
需要注意的是此时不知道p和q谁大,所以两个都要判断
本题就是标准的搜索一条边的写法,遇到递归函数的返回值,如果不为空,立刻返回。
如果 cur->val 小于 p->val,同时 cur->val 小于 q->val,那么就应该向右遍历(目标区间在右子树)。
剩下的情况,就是cur节点在区间(p->val <= cur->val && cur->val <= q->val)或者 (q->val <= cur->val && cur->val <= p->val)中,那么cur就是最近公共祖先了,直接返回cur。
代码如下:
class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q); if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q); return root; } }
迭代法
利用有序性,迭代的方式还是比较简单的,解题思路在递归中已经分析了。
迭代代码如下:
class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { while (true) { if (root.val > p.val && root.val > q.val) { root = root.left; } else if (root.val < p.val && root.val < q.val) { root = root.right; } else { break; } } return root; } }
701.二叉搜索树中的插入操作
题目:给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。
提示:
-
给定的树上的节点数介于 0 和 10^4 之间
-
每个节点都有一个唯一整数值,取值范围从 0 到 10^8
-
-10^8 <= val <= 10^8
-
新值和原始二叉搜索树中的任意节点值都不同
思路及实现
这道题目其实是一道简单题目,但是题目中的提示:有多种有效的插入方式,还可以重构二叉搜索树,一下子吓退了不少人,瞬间感觉题目复杂了很多。
其实可以不考虑题目中提示所说的改变树的结构的插入方式。
如下演示视频中可以看出:只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了。
例如插入元素10 ,需要找到末尾节点插入便可,一样的道理来插入元素15,插入元素0,插入元素6,需要调整二叉树的结构么? 并不需要。
只要遍历二叉搜索树,找到空节点 插入元素就可以了,那么这道题其实就简单了。
接下来就是遍历二叉搜索树的过程了。
递归
递归三部曲:
-
确定递归函数参数以及返回值
参数就是根节点指针,以及要插入元素,这里递归函数要不要有返回值呢?
可以有,也可以没有,但递归函数如果没有返回值的话,实现是比较麻烦的,下面也会给出其具体实现代码。
有返回值的话,可以利用返回值完成新加入的节点与其父节点的赋值操作。(下面会进一步解释)
递归函数的返回类型为节点类型TreeNode 。
-
确定终止条件
终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回。
这里把添加的节点返回给上一层,就完成了父子节点的赋值操作了,详细再往下看。
-
确定单层递归的逻辑
此时要明确,需要遍历整棵树么?
别忘了这是搜索树,遍历整棵搜索树简直是对搜索树的侮辱。
搜索树是有方向了,可以根据插入元素的数值,决定递归方向。
到这里,大家应该能感受到,如何通过递归函数返回值完成了新加入节点的父子关系赋值操作了,下一层将加入节点返回,本层用root.left或者root.right将其接住。
整体代码如下:
class Solution { public TreeNode insertIntoBST(TreeNode root, int val) { if (root == null) // 如果当前节点为空,也就意味着val找到了合适的位置,此时创建节点直接返回。 return new TreeNode(val); if (root.val < val){ root.right = insertIntoBST(root.right, val); // 递归创建右子树 }else if (root.val > val){ root.left = insertIntoBST(root.left, val); // 递归创建左子树 } return root; } }
迭代
在迭代法遍历的过程中,需要记录一下当前遍历的节点的父节点,这样才能做插入节点的操作。
代码如下:
class Solution { public TreeNode insertIntoBST(TreeNode root, int val) { if (root == null) return new TreeNode(val); TreeNode newRoot = root; TreeNode pre = root; while (root != null) { pre = root; if (root.val > val) { root = root.left; } else if (root.val < val) { root = root.right; } } if (pre.val > val) { pre.left = new TreeNode(val); } else { pre.right = new TreeNode(val); } return newRoot; } }
总结
首先在二叉搜索树中的插入操作,大家不用恐惧其重构搜索树,其实根本不用重构。
然后在递归中,我们重点讲了如何通过递归函数的返回值完成新加入节点和其父节点的赋值操作,并强调了搜索树的有序性。
最后依然给出了迭代的方法,迭代的方法就需要记录当前遍历节点的父节点了,这个和没有返回值的递归函数实现的代码逻辑是一样的。
450.删除二叉搜索树中的节点
题目:给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 ,h 为树的高度。
示例:
思路及实现
搜索树的节点删除要比节点增加复杂的多,有很多情况需要考虑
递归
递归三部曲:
-
确定递归函数参数以及返回值
可以通过递归返回值删除节点。
-
确定终止条件
遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了。
-
确定单层递归的逻辑
这里就把二叉搜索树中删除节点遇到的情况都搞清楚。
有以下五种情况:
-
第一种情况:没找到删除的节点,遍历到空节点直接返回了
-
找到删除的节点
-
第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
-
第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
-
第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
-
第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
-
第五种情况有点难以理解,看下面动画:
动画中的二叉搜索树中,删除元素7, 那么删除节点(元素7)的左孩子就是5,删除节点(元素7)的右子树的最左面节点是元素8。
将删除节点(元素7)的左孩子放到删除节点(元素7)的右子树的最左面节点(元素8)的左孩子上,就是把5为根节点的子树移到了8的左孩子的位置。
要删除的节点(元素7)的右孩子(元素9)为新的根节点。.
这样就完成删除元素7的逻辑,最好动手画一个图,尝试删除一个节点试试。
整体代码如下:
class Solution { public TreeNode deleteNode(TreeNode root, int key) { if (root == null) return root; if (root.val == key) { if (root.left == null) { return root.right; } else if (root.right == null) { return root.left; } else { TreeNode cur = root.right; while (cur.left != null) { cur = cur.left; } cur.left = root.left; root = root.right; return root; } } if (root.val > key) root.left = deleteNode(root.left, key); if (root.val < key) root.right = deleteNode(root.right, key); return root; } }
迭代法
删除节点的迭代法还是复杂一些的,但其本质我在递归法里都介绍了,最关键就是删除节点的操作(动画模拟的过程)
代码如下:
class Solution { public TreeNode deleteNode(TreeNode root, int key) { if (root == null){ return null; } //寻找对应的对应的前面的节点,以及他的前一个节点 TreeNode cur = root; TreeNode pre = null; while (cur != null){ if (cur.val < key){ pre = cur; cur = cur.right; } else if (cur.val > key) { pre = cur; cur = cur.left; }else { break; } } if (pre == null){ return deleteOneNode(cur); } if (pre.left !=null && pre.left.val == key){ pre.left = deleteOneNode(cur); } if (pre.right !=null && pre.right.val == key){ pre.right = deleteOneNode(cur); } return root; } public TreeNode deleteOneNode(TreeNode node){ if (node == null){ return null; } if (node.right == null){ return node.left; } TreeNode cur = node.right; while (cur.left !=null){ cur = cur.left; } cur.left = node.left; return node.right; } }
总结
读完本篇,大家会发现二叉搜索树删除节点比增加节点复杂的多。
因为二叉搜索树添加节点只需要在叶子上添加就可以的,不涉及到结构的调整,而删除节点操作涉及到结构的调整。
这里我们依然使用递归函数的返回值来完成把节点从二叉树中移除的操作。
这里最关键的逻辑就是第五种情况(删除一个左右孩子都不为空的节点),这种情况一定要想清楚。
而且就算想清楚了,对应的代码也未必可以写出来,所以这道题目既考察思维逻辑,也考察代码能力。
如果是初学者的话,彻底掌握第一种递归写法就够了。