卷积
文章平均质量分 89
wly_sh
这个作者很懒,什么都没留下…
展开
-
[卷积系列] P3338 [ZJOI2014]力
P3338 [ZJOI2014]力 Ej=Fjqj=∑i=1j−1qi(i−j)2−∑i=j+1nqi(i−j)2E_j= \frac{F_{j}}{q_{j}} =\sum_{i=1}^{j-1} \frac{q_{i}}{(i-j)^2}-\sum_{i=j+1}^{n} \frac{q_{i}}{(i-j)^2}Ej=qjFj=∑i=1j−1(i−j)2qi−∑i=j+1n(i−j)2qi 思想一: 只要是能在时间范围内弄出来的函数,都可以直接转 令f(i)=1i2令f(i)=\f原创 2020-06-11 19:40:03 · 148 阅读 · 0 评论 -
[卷积系列] P3723 [AH2017/HNOI2017]礼物
P3723 [AH2017/HNOI2017]礼物 性质:给一个手环加 相当于给另一个手环减 由于 m<=100m<=100m<=100 所以令增加量为 ccc(可正可负), c∈[−m,m]c∈ [-m,m]c∈[−m,m] 设 一数列为 aaa ,另一列旋转以后的数列为bbb , 那么费用为: ∑i=1n(ai+c−bi)2\sum_{i=1}^n\left(a_i+c-b_i\right)^2∑i=1n(ai+c−bi)2 我们把第i项拿出来拆开,得到: (ai+c−bi)2=原创 2020-06-11 16:37:00 · 219 阅读 · 0 评论 -
[卷积系列] [P3702 [SDOI2017]序列计数]
P3702 [SDOI2017]序列计数 题目: 求 满足下列要求的序列个数: 1.由不超过m的正整数构成的 2.长度为n,而且这n个数的和是p的倍数。 3.n个数中,至少有一个数是质数。 不考虑排列 n<=109n<=10^9n<=109 , m<=2×107m<=2\times 10^7m<=2×107 , p<=100p<=100p<=100 题解: 这题O(nm)O(n^m)O(nm)的暴搜绝对超时,所以就要从p入手。 然后思考怎么是p的倍数,原创 2020-06-11 10:14:13 · 215 阅读 · 0 评论