1. 引言
医学图像分割是疾病诊断、手术规划及预后评估等许多临床任务的重要步骤,准确、鲁棒地从医学图像中分割出目标器官及病变在许多临床应用中起着至关重要的作用。与自然图像相比,如CT、MRI等许多常见的医学影像为三维的图像,即在xy两个维度之外还有z轴,反映目标区域的三维空间信息。
对于三维图像的分割,一种方式是基于2D的网络,将3D的volume处理成一个2D slice的序列,输入网络逐层去进行分割,然后再将每一个slice的分割结果组合成volume的输出。但这种方式的分割仅仅利用了slice内信息,而忽略了不同的slice间z方向上的空间信息。另一种方式是基于3D的网络,直接基于volume进行分割,然而使用3