CMIG 2022 - 2.5D方法在医学图像分割中的应用

image-20241028173721669

Paper Title: Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: An empirical study of 2.5D solutions

1. 引言

医学图像分割是疾病诊断、手术规划及预后评估等许多临床任务的重要步骤,准确、鲁棒地从医学图像中分割出目标器官及病变在许多临床应用中起着至关重要的作用。与自然图像相比,如CT、MRI等许多常见的医学影像为三维的图像,即在xy两个维度之外还有z轴,反映目标区域的三维空间信息。

对于三维图像的分割,一种方式是基于2D的网络,将3D的volume处理成一个2D slice的序列,输入网络逐层去进行分割,然后再将每一个slice的分割结果组合成volume的输出。但这种方式的分割仅仅利用了slice内信息,而忽略了不同的slice间z方向上的空间信息。另一种方式是基于3D的网络,直接基于volume进行分割,然而使用3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ChinaSuperLeon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值