目录
一、基础知识补充
(1)位运算
位运算符要比一般的算术运算符速度要快,而且可以实现一些算术运算不能实现的功能(文章后面会举例子)。如果在完成代码的时候需要做到开发效率高,位运算是必不可少的。位运算用来对二进制位进行操作,包括:按位与(&)、按位或(|)、按位异或(^)、按位取反(~)、按位左移(<<)、按位右移(>>) 。
(2)二进制的详细操作
在进行位运算的时候,会用到大量的二进制源码、反码、补码,所以有需要的朋友可以看看我的上一篇文章哦!!!
文章的链接: http://t.csdn.cn/dasNJ
二、位运算
(1)按位与(&)
1. 应用范围:必须在整数范围内进行
2. 运算方法:将整数从十进制转化为二进制数,上下比较,有零则零 ,两个都是 1 才是 1。
3. 运算编码:补码
4. 输出方式:整形表达式计算使用在内存中的是补码,打印和看到的都是源码。
举例:将 3 & (-5)
// int 为整型4个字节有32个bit位
int a = 3 ; // 00000000 00000000 00000000 000000011 正数,源码=反码=补码
int b = -5 ; // 10000000 00000000 00000000 000000101 -5的源码
// 11111111 11111111 11111111 111111010 -5的反码
// 11111111 11111111 11111111 111111011 -5的补码
int c = a & b ; //按位与:上下比较,有零则零,两个都为 1 才是 1
// 00000000 00000000 00000000 00000011 3的补码
// 11111111 11111111 11111111 11111011 -5的补码
最终结果// 00000000 00000000 00000000 00000011 ----(3)整数,源码=反码=补码
(2)按位或(|)
1. 应用范围:必须在整数范围内进行
2. 运算方法:上下比较有 1 则为 1,两个都是 0 才是 0
3. 运算编码:补码
4. 输出方式:整形表达式计算使用在内存中的是补码,打印和看到的都是源码。
举例:3 | (-5)
// int 为整型有4个字节,32个bit位
int a = 3 ; // 00000000 00000000 00000000 00000011 正数,源码=反码=补码
int b = -5 ; // 10000000 00000000 00000000 00000101 -5的源码
// 11111111 11111111 11111111 11111010 -5的反码
// 11111111 11111111 11111111 11111011 -5的补码
int c = a | b ; //按位或:上下比较,有 1 则 1,两个都是 0 才是 0
// 11111111 11111111 11111111 11111011 -5的补码
// 00000000 00000000 00000000 00000011 3的补码
最终结果// 11111111 11111111 11111111 11111011 为负数,是补码
// 11111111 11111111 11111111 11111010 是反码,补码-1
// 10000000 00000000 00000000 00000101 是源码,各个位按位取反-----(-5)
(3)按位异或(^)
1. 应用范围:必须在整数范围内进行
2. 运算方法:上下比较,相同为 0 ,相异为 1
3. 运算编码:补码
4. 输出方式:整形表达式计算使用在内存中的是补码,打印和看到的都是源码。
举例: 3 ^ (-5)
// int 为整型有4个字节32个bit位
int a = 3 ; // 00000000 00000000 00000000 00000011 正数,源码=反码=补码
int b = -5 ; // 10000000 00000000 00000000 00000101 负数,(-5)的源码
// 11111111 11111111 11111111 11111010 -5的反码
// 11111111 11111111 11111111 11111011 -5的补码
int c = a ^ b ; //按位异或:上下比较,相同为0,相异为1
// 11111111 11111111 11111111 11111011 -5的补码
// 00000000 00000000 00000000 00000011 3的补码
//异或 :11111111 11111111 11111111 11111000 负数,补码
// 11111111 11111111 11111111 11110111 反码
// 10000000 00000000 00000000 00001000 源码-----(-8)
(4)按位左移(<<)
1. 应用范围:必须在整数范围内进行
2. 运算方法:把二进制数向左移动一位,左边溢出的丢弃,右边补零
3. 编码运算:补码
4. 输出方式:整形表达式计算使用在内存中的是补码,打印和看到的都是源码。
举例:将 a = 4 左移一位
// int 为整型,有4个字节,32个bit位
int a = 4 ; // 00000000 00000000 00000000 00000100,正数,源码=反码=补码
int b = a << 1 ; // 把a左移一位,左边丢弃,右边补零
// 00000000 00000000 00000000 00001000 ----(8)
(5)按位右移(>>)
1. 应用范围:必须在整数范围内进行
2. 运算方法:把二进制数向右移动一位,右边丢弃,左边补原符号位
3. 编码运算:补码
4. 输出方式:整形表达式计算使用在内存中的是补码,打印和看到的都是源码。
int a = -4 ; // 10000000 00000000 00000000 00000100 负数,源码
// 11111111 11111111 11111111 11111011 -4的反码
// 11111111 11111111 11111111 11111100 -4的补码
int b = >> 1 ; // 把b向右移动一位,右边丢弃,左边补原符号位
// 11111111 11111111 11111111 11111110 负数,补码
// 11111111 11111111 11111111 11111101 反码
// 10000000 00000000 00000000 00000010 源码----(-2)
此时我们可以发现一个整数,左移有乘2的效果,右移有除二的效果。
三、位运算例题
题目描述:
不创建第三变量,进行变量 a , b 的数值交换
题解:
(方法一):简单数位运算,但是不能满足所有需求
#include <stdio.h>
int main()
{
int a = 5;
int b = 3;
a = a + b;
b = a - b;
a = a - b;
printf("a=%d b=%d\n", a, b);
return 0;
}
若 a , b 两个数相加的和刚好超过 int 的取值范围,方法一就不可行。
(方法二):位运算,简单,高效
//找规律
//3^3=0
//5^5=0
//3^5^5=3
//3^5^3=5
//3^5=6
// 异或支持交换律
#include <stdio.h>
int main()
{
int a = 8;
int b = 9;
int z;
z = a ^ b; //设置密码z
b = z ^ b; //b=a^b^b=a
a = z ^ a; //a=a^b^a=b
printf("a=%d b=%d\n", a, b);
return 0;
}
四、共勉
这篇文章就是我对位运算的理解,如果大家有什么问题可以在评论区说出来哦,我们共同进步,一起加油!!!