【44. 状态压缩DP(蒙德里安的梦想)】

在这里插入图片描述
核心:

  • 摆放方块的时候,先放横着的,再放竖着的。总方案数等于只放横着的小方块的合法方案数。

如何判断,当前方案数是否合法?

  • 所有剩余位置能否填充满竖着的小方块。可以按列来看,每一列内部所有连续的空着的小方块需要是偶数个。

  • 这是一道动态规划的题目,并且是一道 状态压缩的dp:用一个N位的二进制数,每一位表示一个物品,0/1表示不同的状态。因此可以用0→2N−1(N二进制对应的十进制数)0→2N−1(N二进制对应的十进制数)中的所有数来枚举全部的状态。

状态表示

  • f[i][j] 表示已经将前 i -1 列摆好,且从第i−1列,伸出到第 i 列的状态是 j 的所有方案。其中j是一个二进制数,用来表示哪一行的小方块是横着放的,其位数和棋盘的行数一致。

状态转移

  • 既然第 i 列固定了,我们需要看 第i-2 列是怎么转移到到第 i-1列的(看最后转移过来的状态)。假设此时对应的状态是k(第i-2列到第i-1列伸出来的二进制数,比如00100),k也是一个二进制数,1表示哪几行小方块是横着伸出来的,0表示哪几行不是横着伸出来的。

  • 它对应的方案数是f[i−1,k]f[i−1,k],即前i-2列都已摆完,且从第i-2列伸到第i-1列的状态为 k 的所有方案数。

这个k需要满足什么条件呢?

  • 首先k不能和 j在同一行(如下图):因为从i-1列到第i列是横着摆放的12的方块,那么i-2列到i-1列就不能是横着摆放的,否则就是1 3的方块了!这与题意矛盾。所以 k和j不能位于同一行。

  • 既然不能同一行伸出来,那么对应的代码为(k & j ) ==0 ,表示两个数相与,如果有1位相同结果就不是0, (k & j ) ==0表示 k和j没有1位相同, 即没有1行有冲突。

  • 既然从第i-1列到第i列横着摆的,和第i-2列到第i-1列横着摆的都确定了,那么第i-1列 空着的格子就确定了,这些空着的格子将来用作竖着放。如果 某一列有这些空着的位置,那么该列所有连续的空着的位置长度必须是偶数

总共m列,我们假设列下标从0开始,即第0列,第1列……,第m-1列。根据状态表示f[i ] [j] 的定义,我们答案是什么呢

  • f[m][0], 意思是 前m-1列全部摆好,且从第m-1列到m列状态是0(意即从第m-1列到第m列没有伸出来的)的所有方案,即整个棋盘全部摆好的方案。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

题目

在这里插入图片描述

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 12, M = 1 << N;
int st[M];
long long f[N][M];

int main()
{
    int n, m;
    while (cin >> n >> m && (n || m))
    //预处理:判断合并列的状态i是否合法
    //如果合并列的某一行是1表示横放,是0表示竖放
    //如果合并列不存在连续的奇数个0,即为合法状态
    
    {        
        for (int i = 0; i < 1 << n; i ++)
        {
            st[i] = true;
            int cnt =  0;   //记录合并列中连续0的个数
            for (int j = 0; j < n; j ++)
                if (i >> j & 1)  //如果是1
                {
                   if (cnt & 1) st[i] = false;  //如果连续的0个数为奇数,则记录i不合法
                   cnt = 0;
                }
                else cnt ++;                   //如果是0,记录0的个数
                
            if (cnt & 1) st[i] = false;       //处理高位0的个数
        }
        
        //状态计算
        memset(f, 0, sizeof(f));
        f[0][0] = 1;                            //第0列不横放是一种合法的方案
        for (int i = 1; i <= m; i ++)           //阶段:枚举列
            for (int j = 0; j < 1 << n; j ++)   //状态:枚举第i列的状态
                for (int k = 0; k < 1 << n; k++)//状态:枚举第i-1列的状态
                    //俩列状态兼容:不出现重叠,不出现连续的奇数个0
                    if ((j & k) == 0 && st[j | k])
                        f[i][j] += f[i - 1][k];
        cout << f[m][0] << endl;               //第m列不横放即为答案
    }
    return 0;
}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小呆鸟_coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值