目录:
解题及思路学习
738. 单调递增的数字
且仅当每个相邻位数上的数字 x
和 y
满足 x <= y
时,我们称这个整数是单调递增的。
给定一个整数 n
,返回 小于或等于 n
的最大数字,且数字呈 单调递增 。
示例 1:
输入: n = 10
输出: 9
思考:一个数字中不同位置需要判定是单调递增的。
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。
例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
class Solution {
public:
int monotoneIncreasingDigits(int n) {
string strNum = to_string(n);
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i]) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
- 时间复杂度:O(n),n 为数字长度
- 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便
本题只要想清楚个例,例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。
最后代码实现的时候,也需要一些技巧,例如用一个flag来标记从哪里开始赋值9。
968. 监控二叉树
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
!https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2018/12/29/bst_cameras_01.png
输入:[0,0,null,0,0]
输出:1
思考:一个摄像头可以覆盖三层,所以摄像头不需要放在叶子节点层。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
- 二叉树的遍历
- 如何隔两个节点放一个摄像头
每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
if (cur == NULL) return 2;
int left = traversal(cur->left);
int right = traversal(cur->right);
if (left == 2 && right == 2) return 0;
if (left == 0 || right == 0) {
result++;
return 1;
}
if (left == 1 || right == 1) return 2;
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) result++;
return result;
}
};
- 时间复杂度: O(n),需要遍历二叉树上的每个节点
- 空间复杂度: O(n)
精简版:
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
if (left == 2 && right == 2) return 0;
else if (left == 0 || right == 0) {
result++;
return 1;
} else return 2;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
本题主要是要将情况分析清楚。然后针对不同的状态设置不同的返回值,根据返回值判断左右子树的状态。
复盘总结
个人反思
贪心的感觉就是去找规律,找局部最优情况,只要能推出全局最优,就可以按照思路尝试一下。