AI下一步——语言智能转向空间智能

李飞飞目前已经创办了“空间智能”这家公司,致力于研究AI在立体空间方面的理解能力。她的演讲中提到了生物进化至今,能产生智能很大一部分原因是能感受到光,有了视觉,对空间有感知造就了智能的发展。不得不说不愧是AI教母,对下一个研究方向的定位让人醍醐灌顶。
以下是我的理解,就当看一乐。目前人工智能取得的大突破是语言理解,同时也伴随两个问题:泛化能力不强和推理能力差。如果单从语言角度进行分析与改进,怕是很难有突破。我们需要理解语言的本质。语言即是生物之间进行沟通的一种方式。这是为了达成沟通而产生的一种带有很强地域性与物种性的方式。这些特性表明,语言的外在形式并不影响其内核——表达。而且这个表达也只占所有需要沟通的信息的一小部分。我们应该都有这个体会,如果两个人只是微信纯文字聊天,没有任何表情的使用,很容易会出现歧义甚至吵架;如果配上表情包,情绪表达到位,会加强理解;打语音电话,会更流畅地沟通;视频通话,会谈笑风生,沉默也不会尴尬;面对面,这下连肢体交流都加上了,会是一场愉快的交流。上面这些场景,从纯文本表达到加上情绪表达最后一直到包含空间信息。随着信息量的增加,消息的表达逐步顺畅,语言在其中所占的权重逐渐减小。回到AI上。发现没有,我们现在的大模型,不论是大模型对话,AI绘图,还是sora,都是纯文本交流。AI接收到的信息太少,知识库里的知识也不够多,所以表现出来了泛化能力弱,逻辑推理能力不强这些缺点。“纸上得来终觉浅,绝知此事要躬行。”现在已经到了“纸上得来”的地步,想“绝知”,就需要“躬行”了——采集更多的能承载信息的元素。这些更多的元素,基本都是通过视觉来传达的。所以,下一步的发展方向就明朗了——视觉信息学习理解。世界是立体的,想要理解透彻,就要融入空间。最终得出答案——空间理解。下一步的AI发展就是要努力提高AI对空间的理解能力,在这个过程中,需要解决两个大问题:1、数据集,2、模型。目前李飞飞团队已经在制作数据集了,我的浅薄理解来看,其实可以把那些世界名画也纳入数据集中。西方画派对于透视的运用相当精妙,如果AI能理解画作中的透视空间的话,其空间理解能力可能会突破一大截。至于模型,我的浅薄知识已经不够用了,想不出来比神经网络更好的模型。但是我相信以后肯定会有新的模型提出,甚至是那种与硬件结合的,在数学与物理构造上相辅相成的模型出现。等到空间智能发展出来,AI睁眼看世界,接收到并理解了数百万倍于语言的信息时,存在于科幻小说中的人工智能就能问世了吧。到那个时候,AI甚至都能自我训练并进化了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值