骑士斗恶龙

这篇博客介绍了一种使用贪心算法解决骑士杀龙问题的方法,即如何用最少的金币雇佣骑士杀死拥有多个头的恶龙。文章通过详细解析输入输出示例,阐述了算法思路和实现代码,包括对数据进行排序和双指针追逐的策略。最后,给出了AC代码作为解决方案。
摘要由CSDN通过智能技术生成

骑士斗恶龙

作者: Turbo时间限制: 1S章节: 一维数组

问题描述 :

你的王国里有一条n个头的恶龙,你希望雇佣一些骑士把它杀死(也就是砍掉所有的头)。

村里有m个骑士可以雇佣,一个能力值为 x 的骑士可以砍掉恶龙一个直径不超过 x 的头,且需要报酬 x 个金币。

如何雇佣骑士才能砍掉恶龙所有的头,并且支付最小的金币?

注意,一个骑士只能砍一个头并且仅能被雇佣1次。

输入说明 :

输入包含多组测试数据。

每组测试数据的第一行输入两个整数n和m(m和n都在1到20000 之间), n表示龙拥有的头的数目 , m表示王国中的骑士数。

接下来的 n 个整数为龙头的直径,再接下来m个整数为骑士的能力值。

输出说明 :

对于每组测试数据, 输出一行包含国王杀死龙需要支付的最低数量的金币。如果骑士不可能杀死龙, 输出一行:

“Lose!”(输出不包含引号)

输入范例 :

2 3
5
4
7
8
4
2 1
5
5
10

输出范例 :

11
Lose!

贪心思想:骑士数组和恶龙数组升序排列,两个指针追逐,直到超过边界。如果龙的指针不到边界,则失败。
AC代码

#define MAX 20002
#include <iostream>
#include <algorithm>
using namespace std;

int dragon[MAX],knight[MAX];
void ini(){
    for(int i=0;i<MAX;i++){
        dragon[i]=0;
        knight[i]=0;
    }
}

int main(){
    int n,m;
    while(cin>>n>>m){
        ini();
        for(int i=0;i<n;i++){
            cin>>dragon[i];
        }
        for(int i=0;i<m;i++){
            cin>>knight[i];
        }
        sort(dragon,dragon+n);
        sort(knight,knight+m);
        int sum=0,d_idx=0,k_idx=0;
        while(d_idx<n&&k_idx<m){
            if(dragon[d_idx]<=knight[k_idx]){
                sum+=knight[k_idx];
                d_idx++;
                k_idx++;
            }else{
                k_idx++;
            }
        }
        if(d_idx<n){
            cout<<"Lose!"<<endl;
        }else{
            cout<<sum<<endl;
        }

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值