python中numpy库内multiply()、dot()和 * 三种乘法运算的区别小记

首先,导入函数包:

# -*- coding: utf-8 -*-
import numpy as np

1 np.multiply()函数:

数组:对应位置元素相乘(点对点)
矩阵:对应位置元素相乘(点对点)
结论:结果相同

示例:

# 生成数组
A = np.array([[1,2],[3,4]])
B = np.array([[1,3],[2,4]])

# 生成矩阵
A_mat = np.mat(A)
B_mat = np.mat(B)

# 输出np.multiply()结果
A_B_multiply = np.multiply(A, B)
print(A_B_multiply)
'''
[[1 6]
 [6 16]]
'''
A_B_mat_multiply = np.multiply(A_mat, B_mat)
print(A_B_mat_multiply)
'''
[[1 6]
 [6 16]]
'''
# 结论:结果相同

2 np.dot()函数:

数组:行对列,对应元素乘积后相加求和(矩阵乘法)
矩阵:行对列,对应元素乘积后相加求和(矩阵乘法)
结论:结果相同

示例:

# 生成数组
A = np.array([[1,2],[3,4]])
B = np.array([[1,3],[2,4]])

# 生成矩阵
A_mat = np.mat(A)
B_mat = np.mat(B)

# 输出np.dot()结果
A_B_dot = np.dot(A, B)
print(A_B_dot)
'''
[[5 11]
 [11 25]]
'''

A_B_mat_dot = np.dot(A_mat, B_mat)
print(A_B_mat_dot)
'''
[[5 11]
 [11 25]]
'''
# 结论:结果相同

3 ‘*’乘 :

数组:(点对点乘)对应位置元素相乘
矩阵:(矩阵乘法)行对列,对应元素乘积后相加求和
结论:结果不同

示例:

# 生成数组
A = np.array([[1,2],[3,4]])
B = np.array([[1,3],[2,4]])

# 生成矩阵
A_mat = np.mat(A)
B_mat = np.mat(B)

# 输出操作‘*’结果
print(A*B)
'''
[[1 6]
 [6 16]]
'''

print(A_mat*B_mat)
'''
[[5 11]
 [11 25]]
'''
# 结论:结果不同

总结:

数组矩阵
np.multiply()点对点相乘点对点相乘
np.dot()矩阵乘法矩阵乘法
*点对点相乘矩阵乘法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值