AcWing 362. 区间

思路

  • 这题用差分约束需要找齐所有的不等式,令S[i]表示0~i之间有几个数字被放入集合里面了
    • S[i]>=S[i-1]
    • S[i-1]>=S[i]-1,S[i]最多比S[i-1]大1
    • S[b]-S[a-1]>=c
  • 根据以上不等式建立图

代码1

  • 这里就是最朴素的建图法,最后把N-1这个点作为超级原点来连接每个点
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;

const int N = 50010, M = 150010;

int n;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
queue<int> q;
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

void spfa()
{
    memset(dist, -0x3f, sizeof dist);
    dist[N-1] = 0;
    st[N-1] = true;
    q.push(N-1);

    while (q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;

        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (dist[j] < dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);
    for (int i = 0; i < N-1; i ++ )
    {
        add(i - 1, i, 0);
        add(i, i - 1, -1);
    }

    for (int i = 0; i < n; i ++ )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        a, b;
        add(a - 1, b, c);
    }
    for(int i=0;i<N-1;i++){//把N-1作为超级原点
        add(N-1,i,0);
    }
    spfa();

    printf("%d\n", dist[50001]);

    return 0;
}

代码2

  • 这里也可以把[a,b]区间往右移动一个单位,这样就可以空出来S[0]这个点,作为超级原点
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;

const int N = 50010, M = 150010;

int n;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
queue<int> q;
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

void spfa()
{
    memset(dist, -0x3f, sizeof dist);
    dist[0] = 0;
    st[0] = true;
    q.push(0);

    while (q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;

        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (dist[j] < dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);
    for (int i = 1; i < N; i ++ )
    {
        add(i - 1, i, 0);
        add(i, i - 1, -1);
    }

    for (int i = 0; i < n; i ++ )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        a ++, b ++ ;//区间往后移动一位
        add(a - 1, b, c);
    }

    spfa();

    printf("%d\n", dist[50001]);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值