题目
Tyvj已经一岁了,网站也由最初的几个用户增加到了上万个用户,随着Tyvj网站的逐步壮大,管理员的数目也越来越多,现在你身为Tyvj管理层的联络员,希望你找到一些通信渠道,使得管理员两两都可以联络(直接或者是间接都可以)。本题中所涉及的通信渠道都是 双向 的。
Tyvj是一个公益性的网站,没有过多的利润,所以你要尽可能的使费用少才可以。
目前你已经知道,Tyvj的通信渠道分为两大类,一类是必选通信渠道,无论价格多少,你都需要把所有的都选择上;还有一类是选择性的通信渠道,你可以从中挑选一些作为最终管理员联络的通信渠道。
数据保证给出的通信渠道可以让所有的管理员联通。
注意: 对于某两个管理员 u,v,他们之间可能存在多条通信渠道,你的程序应该累加所有 u,v 之间的必选通行渠道。
输入格式
第一行两个整数 n,m 表示Tyvj一共有 n 个管理员,有 m 个通信渠道;
第二行到 m+1 行,每行四个非负整数,p,u,v,w 当 p=1 时,表示这个通信渠道为必选通信渠道;当 p=2 时,表示这个通信渠道为选择性通信渠道;u,v,w 表示本条信息描述的是 u,v 管理员之间的通信渠道,u 可以收到 v 的信息,v 也可以收到 u 的信息,w 表示费用。
输出格式
一个整数,表示最小的通信费用。
数据范围
1≤n≤2000
1≤m≤10000
输入样例:
5 6
1 1 2 1
1 2 3 1
1 3 4 1
1 4 1 1
2 2 5 10
2 2 5 5
输出样例:
9
思路
- 题目就是要求再已经连上某一些边的基础上,求最小生成树,其实用Kruskal算法就可以解决这个问题,只不过枚举的边是可选择的边,如果是必选的直接连上即可
代码
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2010, M = 10010;
int n, m;
struct Edge
{
int a, b, w;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}e[M];
int p[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) p[i] = i;
int res = 0, k = 0;
for (int i = 0; i < m; i ++ )
{
int t, a, b, w;
cin >> t >> a >> b >> w;
if (t == 1)//如果是必选边,就直接加上
{
res += w;
p[find(a)] = find(b);
}
else e[k ++ ] = {a, b, w};
}
sort(e, e + k);
for (int i = 0; i < k; i ++ )//之后对于可以选择的边做一次Kruskal算法即可
{
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if (a != b)
{
p[a] = b;
res += w;
}
}
cout << res << endl;
return 0;
}