题目
给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量。
输入格式
第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边。
输出格式
输出共N行,表示每个点能够到达的点的数量。
数据范围
1≤N,M≤30000
输入样例:
10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9
输出样例:
1
6
3
3
2
1
1
1
1
1
思路
- 题目求每一个点能到达点的个数,由于是有向无环图,那么可以用拓扑排序求出点与点之间的依赖顺序,再利用dp即可,这里用了bitset,进行对于有重复点集合的合并处理
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
const int N = 30010, M = 30010;
int n, m;
int h[N], e[M], ne[M], idx;
int d[N], q[N];
bitset<N> f[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void topsort()
{
int hh = 0, tt = -1;
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if ( -- d[j] == 0)
q[ ++ tt] = j;
}
}
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
d[b] ++ ;
}
topsort();
for (int i = n - 1; i >= 0; i -- )
{
int j = q[i];
f[j][j] = 1;
for (int k = h[j]; ~k; k = ne[k])
f[j] |= f[e[k]];//集合合并
}
for (int i = 1; i <= n; i ++ ) printf("%d\n", f[i].count());
return 0;
}