AcWing 164. 可达性统计(每个点能到达的点的个数=拓扑排序+dp)

题目

给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量。

输入格式
第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条有向边。

输出格式
输出共N行,表示每个点能够到达的点的数量。

数据范围
1≤N,M≤30000
输入样例:
10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9
输出样例:
1
6
3
3
2
1
1
1
1
1

思路

  • 题目求每一个点能到达点的个数,由于是有向无环图,那么可以用拓扑排序求出点与点之间的依赖顺序,再利用dp即可,这里用了bitset,进行对于有重复点集合的合并处理

代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <bitset>

using namespace std;

const int N = 30010, M = 30010;

int n, m;
int h[N], e[M], ne[M], idx;
int d[N], q[N];
bitset<N> f[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

void topsort()
{
    int hh = 0, tt = -1;
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];
        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if ( -- d[j] == 0)
                q[ ++ tt] = j;
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    for (int i = 0; i < m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
        d[b] ++ ;
    }

    topsort();

    for (int i = n - 1; i >= 0; i -- )
    {
        int j = q[i];
        f[j][j] = 1;
        for (int k = h[j]; ~k; k = ne[k])
            f[j] |= f[e[k]];//集合合并
    }

    for (int i = 1; i <= n; i ++ ) printf("%d\n", f[i].count());

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值