卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
#include<iostream>
using namespace std;
int main()
{
int n,i=0;
cin>>n;
while(n!=1){
if(n%2==0){
n=n/2;
i++;
}
else{
n=(3*n+1)/2;
i++;
}
}
cout<<i;
return 0;
}
卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。
当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。
现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。
输入格式:
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。
输出格式:
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。
输入样例:
6
3 5 6 7 8 11
输出样例:
7 6
#include<bits/stdc++.h>
using namespace std;
int main()
{
int flag=0;
int n,i,j,p,q=0,m;
cin>>n;
int a[n];
int b[10000]={0};
for(i=0;i<n;i++){
cin>>a[i];
}
sort(a,a+n);
for(i=0;i<n;i++){
if(a[i]!=0){
q=0;
m=a[i];
while(m!=1){
if(m%2==0){
m=m/2;
b[q]=m;
q++;
}
else{
m=(3*m+1)/2;
b[q]=m;
q++;
}
}
for(j=0;j<n;j++){
for(p=0;p<q;p++){
if(a[j]==b[p]&&i!=j) a[j]=0;
}
}
}
}
for(i=n-1;i>=0;i--){
if(a[i]!=0&&flag==1) cout<<" "<<a[i];
if(a[i]!=0&&flag==0){
cout<<a[i];
flag=1;
}
}
return 0;
}