最清楚YOLOv3骨干网络结构详解详解分析 darknet53网络结构图 备忘

本文详细解析YOLOv3的骨干网络darknet53的结构,包括下采样卷积与残差块的组合,以及YOLO的多尺度输出特点。通过示例说明残差结构如何增强网络学习能力,并介绍了YOLO在不同尺度上的目标检测应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考原文链接:https://blog.csdn.net/dz4543/article/details/90049377
https://blog.csdn.net/L1778586311/article/details/112596919
https://blog.csdn.net/L1778586311/article/details/112599259
完整代码百度云直达链接(包含预训练权重)(小白注释)
https://pan.baidu.com/s/1US6e93OaCYOghmF21v0UIA
提取码:z8at

YOLOv3本身使用的是全卷积层,连图或者说特征图的尺寸的修改都是通过卷积层来实现。来张YOLO论文的结构图:
在这里插入图片描述
再来一个YOLO输出时的显示:

layer     filters    size              input                output
   0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32 0.299 BF
   1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64 1.595 BF
   2 conv     32  1 x 1 / 1   208 x 208 x  64   ->   208 x 208 x  32 0.177 BF
   3 conv     64  3 x 3 / 1   208 x 208 x  32   ->   208 x 208 x  64 1.595 BF
   4 Shortcut Layer: 1
   5 conv    128  3 x 3 / 2   208 x 208 x  64   ->   104 x 104 x 128 1.595 BF
   6 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64 0.177 BF
   7 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128 1.595 BF
   8 Shortcut Layer: 5
   9 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64 0.177 BF
  10 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128 1.595 BF
  11 Shortcut Layer: 8
  12 conv    256  3 x 3 / 2   104 x 104 x 128   ->    52 x  52 x 256 1.595 BF
  13 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  14 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  15 Shortcut Layer: 12
  16 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  17 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  18 Shortcut Layer: 15
  19 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  20 conv    
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值