自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 tensorflow的安装、和解决一些常见的错误问题

Tensorflow1.12.0(gpu)版本安装 大部分报错 解决的过程! 本篇文章主要解决CUDA安装失败问题 附带着解决 找不到模块问题 我看过很多的博客关于tensorflow安装的步骤,但是都不是很好用,有的是CUDA安装不上,找不到指定模块 等等一系列问题,本人亲测好用,解决了以上问题 以我自己电脑为例:win10 显卡NVIDIA GTX1050Ti(一个集成显卡,一个独立显卡,独立...

2020-01-04 09:06:51 687

原创 记录一些常用的python中的小知识

一键导出python当前环境中的所有库的版本号 在terminal中, 激活当前的环境,然后输入 pip list --format freeze > D:/requirements.txt

2020-11-22 18:17:23 8

原创 深度学习 之 CNN原理

CNN原理详解 首先什么是卷积神经网络(CNN)? 起源就不说了,一搜一大片。是用于图像领域的一种包含卷积计算且具有深度结构的前馈神经网络。图像的尺寸称为图像分辨率,分辨率是数字图像可辨别的最小细节。也就是说图像本是又一个一个颜色颗粒排列组合所看到的宏观效果。直接上图对比。 单通道的数字图像被称为灰度图。通常单通道记录了采样点的亮度信息。 通过一种卷积操作进行提取特征(与RNN的差别就先不在这里讲了),最终使模型学习这种位置之间的关系,来进行识别预测等等(三通道图所载有的特征会更多)。 1. 卷积神经

2020-11-07 11:28:13 60

原创 深度学习 - 目录

前言: 最近准备复习一下深度学习的知识,作为记录,好久没有复习了,准备巩固一下知识,作为回忆笔记

2020-11-07 10:46:13 26 1

原创 AC自动机

AC自动机是一种多模匹配算法,所谓多模匹配,就是模式串有多个。其主要的步骤分为三步: <–借鉴必须放到前面—> 1、用模式串建立字典树 字典树(Trie树)是一种变种的哈希数,存放字符串非常方便,查找效率也比较高。字典树中存放的字符串即是从根到叶子路径上所有结点值,每次插入新的字符串,在遍历字符串的同时,从根结点开始查找,若字符出现在当前结点的子结点,则转到子结点继续查找下一个字符,否则将该字符插到当前结点的子结点中。这里Python语言由于没有C/C++的结构体,所以使用类来构建出结点类。此外

2020-10-30 23:27:37 64 2

原创 数据结构之树

1、树 **概念:**树是由结点或者顶点和变组成的(可能是非线性的),且不存在任何环状的一种数据结构。没有结点的树称为空树(null或者empty 树)。一颗非空的树包括一个根节点,还有很多个附加结点,所有结点构成一个多级分层结构。 二叉树 概念: 每个结点至多拥有两颗子树(即二叉树中不存在大于两个结点的子树),并且二叉树的子树有左右之分,其次序不能任意颠倒 性质: 若二叉树的层次从0开始,则二叉树的第i层最多拥有2^i个结点(i>=0 ) 高度为k的二叉树,最多有2^(k+1) - 1

2020-10-30 23:05:20 22

原创 数据结构——目录

从头开始,每周一篇博客,从数据结构开始,一直到nlp自我总结

2020-10-30 22:20:10 6

原创 06 隐马尔科夫

HMM(隐马尔可夫模型) 原博文地址写在最前面 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。 下面用一个简单的例子来阐述: 假设我手里有三个不同的骰子。第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概

2020-05-24 18:31:24 55

原创 05 seq2seq和Attention

1、seq2seq seq2seq模型是以编码(Encode)、解码(Decode)为代表的架构方式模型。 编码(Encode)将输入序列转化成一个固定长度的向量(语义向量C) 解码(Encode)将固定长度的向量(语义向量C)转化成一个输出序列 编码方式:一般为多层LSTM 解码方式:一般为RNN、CNN等 问题: 由于seq2seq模型在编解码阶段,使用由一个不变的语义向量C来联系,编码器要将整个序列的 信息压缩进一个固定长度的向量中去,就造成 1.语义向量无法完全表示真个序列的信息 2.最开始输

2020-05-24 16:49:55 39

原创 04 简单的文本分类

传统的文本分类方法 特征工程 分类器 深度学习文本分类方法 文本的分布式表示:词向量(word embedding) 深度学习文本分类模型:FastText、TextCNN、TextRNN、TextRNN+Attention 待续04

2020-05-15 22:47:56 76

原创 01简单的文本表示

简单的说:就是将文本转化成向量,由字符转化成向量。怎么将文本转化成向量就是文本表示的核心。 优点: 1、方便计算机对文本进行处理。 2、方便进行机器学习,传统的机器学习和深度学习都需要。 3、良好的文本表示形式可以极大地提高算法效率。 文本表示: 1、基于粒度分类: 长文本表示 短文本表示(句子) 词表示 2、基于表示方法分类: 离散表示 one-hot《向量长度非常大,有明显的稀疏性问题》 Multi-hot 分布式 基于矩阵类 降维 聚类 分布式 基于神经网络 CBOW Skip-gram 离散表示

2020-05-15 22:30:49 62

原创 02自然语言模型NLP

1、定义:自然语言模型是一个计算单词序列(句子)的概率模型。 其实就是判断一个句子的合理性。 例如: 我今天要去【上班】 我今天要去【游泳】 我今天要去【爬山】 通过语言模型计算出去【上班】 的概率最大,得出我今天要去爬【上班】 N-Gram 常用的有BiGram和TriGram,相当于一个滑动窗口,用于计算窗口内词(字)顺序的概率 句子的概率通常是通过待预测单词之前长度为n的窗口建立条件概率来进行预测,此处引入马尔科夫假设 为了估算条件概率,常用极大似然估计 解释: bigram是n=2 《s》后面是

2020-05-14 21:50:52 75

原创 Mysql常用命令以及在python中操作命令

MySQL中一些常用的命令进行总结一下,自己做个笔记 创建表 create table student( id int auto_increment primary key, name varchar(100) not null, sex char(1) not null, address varchar(100) default '郑州', phone varchar(11), ...

2020-04-29 13:32:50 39

原创 03(2)word2vec理论知识

当数据量大的时候,一般使用Skip-Gram模型 当数据量小的时候,一般使用层次softmax模型 一、CBOW模型 词袋子模型 层次softmax 负例采样 1、词袋子模型 词袋子模型是去掉了隐藏层,使用了一个上下文窗口,将映射层的乘法变为的加法 缺点:无法解决多义词问题<每个词都有唯一的编码> 2、层次softmax<两边预测中间> 使用Huffman Tree编码...

2020-04-16 23:44:53 50

原创 03(1)word2vec简单的理解

前言 word2vec也叫word embeddings,中文名“词向量”,作用就是将自然语言中的字词转为one-hot形式的类型, 只是不单单是01000的形式了。 word2vec是从大量的文本语料中以无监督的方式学习语言知识的一种模型。 当文本语料库中语料很大的时候,使用one-hot形式,会产生很高的维度,不利于计算,通过过word2vec训练一个低维词向量就解决掉维度高的麻烦了,不得不说...

2020-04-16 20:39:44 87

原创 新手上道,多多指教

求大神带带新手,能帮忙解释一下,为什么子线程不遵循while len(alist)>94条件,接着执行语句 import random, time, string, threading mlock = threading.Lock() alist = [] blist = [] class Demo00(threading.Thread): def run(self): afile = op...

2019-08-12 19:10:12 111

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除