【LeetCode】每日算法-第1天

题目1:求括号最大深度

如果字符串满足以下条件之一,则可以称之为 有效括号字符串(valid parentheses string,可以简写为 VPS):

字符串是一个空字符串 "",或者是一个不为 "("")" 的单字符。
字符串可以写为 AB(A 与 B 字符串连接),其中 A 和 B 都是 有效括号字符串 。
字符串可以写为 (A),其中 A 是一个 有效括号字符串 。
类似地,可以定义任何有效括号字符串 S 的 嵌套深度 depth(S)depth("") = 0
depth(C) = 0,其中 C 是单个字符的字符串,且该字符不是 "(" 或者 ")"
depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是 有效括号字符串
depth("(" + A + ")") = 1 + depth(A),其中 A 是一个 有效括号字符串
例如:"""()()""()(()())" 都是 有效括号字符串(嵌套深度分别为 012),而 ")(""(()" 都不是 有效括号字符串 。

给你一个 有效括号字符串 s,返回该字符串的 s 嵌套深度 

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-nesting-depth-of-the-parentheses
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

示例1:
输入:s = “(1+(2*3)+((8)/4))+1”
输出:3
解释:数字 8 在嵌套的 3 层括号中。


示例2:
输入:s = “(1)+((2))+(((3)))”
输出:3


示例3:
输入:s = “1+(2*3)/(2-1)”
输出:1

int maxDepth(char * s){
     int res=0,count=0;
    for(int i=0;s[i]!='\0';i++)
    {
        if(s[i]=='(')
        {    count++;
           res =  res>count?res:count; 
        }
        else if(s[i]==')')
        count--;
    }
    return res;
}
  • 题解思路:遍历字符串 s,如果遇到了一个左括号,那么就将其入栈;如果遇到了一个右括号,那么就弹出栈顶的左括号,与该右括号匹配。这一过程中的栈的大小的最大值,即为 s 的嵌套深度

思路来源:

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/maximum-nesting-depth-of-the-parentheses/solution/gua-hao-de-zui-da-qian-tao-shen-du-by-le-av5b/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

题目2:除数博弈

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

选出任一 x,满足 0 < x < N 且 N % x == 0 。
用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 False。假设两个玩家都以最佳状态参与游戏。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/divisor-game
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

示例 1
输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。


示例2:
输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

bool divisorGame(int n){
    return n%2==0;
}
  • 题解思路:
    • 数字N如果是奇数,它的约数必然都是奇数;
    • 若为偶数,则其约数可奇可偶。
    • 无论N初始为多大的值,游戏最终只会进行到N=2时结束,那么谁轮到N=2时谁就会赢。

因为爱丽丝先手,N初始若为偶数,爱丽丝则只需一直选1,使鲍勃一直面临N为奇数的情况,这样爱丽丝稳赢;

N初始若为奇数,那么爱丽丝第一次选完之后N必为偶数,那么鲍勃只需一直选1就会稳赢。

综述,判断N是奇数还是偶数,即可得出最终结果!

思路来源:
作者:coder233
链接:https://leetcode-cn.com/problems/divisor-game/solution/qi-shi-shi-yi-dao-shu-xue-ti-by-coder233/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值