C语言数据存储——浮点型篇

根据IEEE 754规定,任意一个二进制浮点数V可以表示成:
V = (-1)^S * M* 2^E
S表示符号位,M表示有效数字,E表示指数位

例1:
V1 = 5.0f
= 101.0
= (-1)^0 * 1.01 * 2^2
S = -1,M = 1.01,E = 2

例2:
V2 = 9.5f
= 1001.1
= (-1)^0 * 1.0011 * 2^3
S = -1,M = 1.0011,E = 3

IEEE 754规定:
对于32位的浮点数(单精度浮点数,即float型),最高的1位是符号位S,接着的8位是指数位,剩下的23位为有效数字M(如图1)。
在这里插入图片描述
图1 单精度浮点数存储模型

对于64位的浮点数(双精度浮点数,即double型),最高的1位是符号位S,接着的11位是指数位,剩下的52位为有效数字M(如图2)。

图2 双精度浮点数存储模型

IEEE 754对有效数字M和指数E,还有一些特别规定:
1≤M<2,即M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01时,只保存01,等读取时,再把第一位的1加上。这样做的目的,是节省1位有效数字。
以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

首先,E为一个无符号整数(unsigned int)
如果E为8位,其取值范围为0~~255;如果E为11位,其取值范围为0~2047。但是科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127(f1oat —>E(真实值)+127(中间值));对于11位的E,这个中间数是1023(doub1e —>E(真实值)+1023(中间值))。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

例3 以0.5为例
V = 0.5f
= 0.1
= 1.0 * 2^(-1)
= (-1)^0 * 1.0 * 2^(-1)
S = 0,M = 1.0,E = -1

例4 以浮点数5.5为例

float a = 5.5;
5.5
=101.1
=1.011*2^2
S = 0,M = 011,E = 2
E + 127 = 129
0 10000001 01100000000000000000000//内存存储
01000000 10110000 00000000 00000000
4 0 b 0 0 0 0 0
0x40 b0 00 00(内存十六进制存储情况)

这里还会存在两种极端情况(E全为0和E全为1)
E全为0(E=0)
浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
即:E(真实值) = -127 ,此时表示的数字1.xxxxxx*2^(-127)是一个非常小的数字。

E全为1(E=255)
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S) ;
E(真实值) = 128,此时表示的数字1.xxxxxx*2^128是一个无穷大的数字。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值