Nim博弈(博弈论)

1.https://www.acwing.com/problem/content/893/
题目:给定n堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。问如果两人都采用最优策略,先手是否必胜。
思路:
必胜状态(a1^ a2 …^an!=0):可以走到某一个必败状态
必败状态(a1^ a2 …^an==0):走不到任何一个必败状态
证明(参考算法进阶指南):

  1. (a1^ a2 …^an!=0)可以走到某一个必败状态
  2. (a1^ a2 …^an==0)走不到任何一个必败状态

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
	int n;
	scanf("%d",&n);
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		int x;
		scanf("%d",&x);
		ans^=x;
	}
	if(ans) printf("Yes\n");
	else printf("No\n");
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值