伽罗华域(有限域)

域F由元素和加法、乘法两种运算组成,且每种运算下都有逆运算(减法、除法)存在。域F内同时满足加法和乘法运算的各个元素需要满足以下条件:
(1)对于加法和乘法运算,F是封闭的,即F内任意两个元素之和或之积仍在F内;
(2)对每种运算,域内元素通常满足结合律和交换律;
(3)满足通常的分配律;
(4)F内的任何元素u都有一个唯一的加法恒元0和乘法恒元1,满足以下关系:u+0=u,u x1=u
(5)域内的每个元素u都有一个唯一的加法逆元-u,且:u+(-u)=0。当u!=0时,有一个唯一的乘法逆元u-1,且u x (u-1)=1.。
域内元素的个数称为域的阶,可以是有限的,也可以是无限的。

有限域

有限域以 GF(q) 表示, q 是域内的 元素个数。对任何的 qm ,都存在一个有限域 GF(qm) ,其中 q 是素数, m 是整数。 GF(2) 是最简单的素域,他只含有 0 和 1 表示的 0 元和 1 元。
有限域在编码理论中具有重要的地位,包括有限个元素的域成为有限域或伽罗华域,通常把有 q 个元素的有限域几位 GF(q) 。每个域中必须包含一个零元 0 和一个单位元 e ,若 q 为素数,则可构成一个由元素 {0,1,…,q-1} 组成的 q 元域 GF(q) 。对任何正整数m,都可以将 GF(q) 扩展成 GF(qm),称之为 GF(q) 的 m 次扩域。
在有限域 GF(q)中,加法和乘法运算定义为模 q 运算,记为 mod q 。在域 GF(q) 中,满足 ne=0 的最小正整数 n 称为域的特征。域中一切非零元素的特征都等于域的特征,域的特征一定为素数。非零元素构成的乘法群的阶定义为域中该元素的级。若 a 为域 GF(q) 中的 n 级元素,则称 a 为 n 次单位原根。若某一元素 a 的级为 q-1 ,则称 a 为本院域元素合伙本原元。域的特征表明了域中加法运算的循环性,域的级表明了域中乘法运算的循环性。
二元域 GF(2)是扩域 GF(2m) 的一个子域,类似于实数域的一个子域。有限元素的集合 GF(2m) 只能含有 2m 个元素,可以全部有本原元 a 的幂次和零元 0 表示,并且对乘法封闭,其约束条件为
b= 2m-1
ab+1=0

根据这个限制条件,任何幂次等于或超于 b 的域元素都可将为下述幂次小于 b 的元素。
A=2m+n, B=2m-1, C=2n+1
aA=aBaC=aC

因此 GF(2m) 的全部元素就可以表示为
GF(2m) ={0, a0, a1, …, ab-1}

有限域上的运算

有限域的一个重要的性质是每个有限域 GF(q) 至少包括一个本原 a 。该元素的 q-1 次幂就是这个域的 q-1 个非零元素,也即 q-1 个非零元素可表示为 {a, a2, … , aq-2} 且互不相等,所以 aiaj 的 q-1中乘积也互不相等。域中所有非零元素都可以用本原元 a 的前 q-1 个秘书来表示,即也可用他们各自的指数表示各个域元素。
在实际使用中,需要将域元素表示为便于计算机计算的形式。如下:
首先, GF(q)内各个元素可以构成 m 重的总数为 qm 个元素,并且组成了一个 GF(q) 上的 m 维矢量空间。
其次,可以使用 GF(q) 中矢量的加减法进行矢量的相加和相减运算,并得到这个适量空间内的另一个矢量。
然后,为了进行矢量的乘法与除法,需要将矢量表示为多项式,其各项的系数于是两中的各元素相对应。与矢量相加相同,可以对所想是进行诸位相加。
最后,每个系数取自有限域 GF(q)的 m 次不可约多项式,最少有一个元素个数为 qm 的有限域 GF(q)与其对应存在。
在运算过程中,元素的基本形式是十进制,运算过程如下:
(1)加法:将两个十进制数先转换为两个二进制数表示,然后将对应位进行异或运算,再将运算结果转换成十进制存储;
(2)乘法:把两个元素的十进制表示转换成指数形式,将指数直接相加,取模后得到乘积的指数形式,然后在转换称十进制形式存储。

有限域多项式

(1)域上多项式:系数取自域 GF(q)的多项式 f(x)。
(2)既约多项式:设 f(x) 是次数大于零的多项式,若出了常数和常数与本身的乘积以外再不能被 GF(q)上其他多项式除尽,则称 f(x) 为域 GF(q) 上的既约多项式。
(3)最小多项式:系数取自有限域 GF(q) ,且以 a 为根的所有首一多项式(即最高次数的系数为1的多项式)中,必有一个次数最低的,称之为 a 的最小多项式。
(4)本原多项式:系数取自有限域 GF(q) ,且以域 GF(qm) 上本原域元素为根的最小多项式成为本原多项式。一个多项式是本原多项式的充要条件是:如果一个 m 阶既约多项式 f(x) 整除 xn+1 的最小正整数 n 满足 n=2m-1 , 则该多项式是本原的。如下例所示:给定两个多项式 p1(x)=x4+x+1 和 p2(x)=x4+x3+x2+x+1, 判断多项式是否为本原多项式。
通过验证这个幂次为 m=4 的多项式是否能够整除 xn+1, 但不能整除 1<=n<15 范围内的 xn+1 ,就可以确定他是否为本原多项式。经反复计算, p1(x) 是本原多项式, p2(x) 不是,因为他能整除 x5+1。
不同 m 之对应的部分本原多项式如下所示:
部分本原多项式
例如,假设 a 是 GF(2m) 的本原多项式 p(x) 的根,也即 GF(2m) 的本原元,则可以由零元和本原元 a 得到 GF(2m) 的全部元素, m=3 时 GF(23) 的元素如下表所示:

幂次表示②进制表示⑩进制表示
00000
a0=10011
a1=a0102
a2=a20113
a3=a+11004
a4=a2+a1015
a5=a2+a+11106
a6=a2+11117

对上述例子进行详细说明如下:
当 m=3 是,其本原多项式可从上上表中获知为 p(x)=x3+x+1,所以由 p(x) 所定义的有限域中包含了 2m=23=8 个元素。求解 p(x) 的根,即找到使 p(x)=0 的 x 。因为 p(0)=p(1)=1 (运用模2运算),所以二进制数 0 和 1 都不是 p(x) 的根。由基本代数学理论可知,次数为 m 的多项式必然有 m 个根。对于 m=3,p(x)=0 有3个根,这3个根不可能位于与 p(x) 系数相同的有限域中,而是位于扩展域 GF(23) 中。用扩域的元素 a 来定义多项式 p(x) 的根,可写成 p(a)=0 ,即
a3+a+1=0 ——> a3=a+1
这意味着 a3 可以表示更低阶的 a 项的加权和(模2加法运算等价于模2减法运算)。类似的,有:
a4=a x a3=a x (a+1) =a2+a
a5=a x a4=a x (a2+a)=a3+a2=a2+a+1

从而有限域 GF(23) 的全部元素为
GF(23) ={0,1,a, a2, a3 , a4, a5, a6}
我们可以通过穷举来确定本原多项式的根,由于仅有 p(a)=p(a2)=p(a4)=0 ,因此, p(x) 的根为 a、a2、a4
另外, GF(2m) 的每个元素的最小多项式 m(x) 可以通过多项式分解得到。仍以 GF(23) 为例进行说明。对于 GF(23) ,p=2,m=3, 因此,对 x7+1 进行分解,我们可以得到
x7+1 =(x+1)(x3+x+1)(x3+x2+1)
而 GF(23) 的所有非0元素为
{1,a, a2, a3 , a4, a5, a6}={1,a,a2,a+1,a2+a,a2+a+1,a2+1}
在 GF(23) 上,有
x3+x+1=(x+a)(x+a2)(x+a2+a)
x3+x2+1=(x+a+1)(x+a2+1)(x+a2+a+1)

可以将上述分解式写为:
x7+1=(x+1)(x+a)(x+a2)(x+a2+a)(x+a+1)(x+a2+1)(x+a2+a+1)
=(x+1)[(x+a)(x+a2)(x+a2+a)]
[(x+a+1)(x+a2+1)(x+a2+a+1)]
*
由此,可得到每个根的最小多项式,如下表所示。
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值