自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 LS和MMSE信道估计以及Matlab仿真

对信道估计两个方法LS和MMSE的理论推导和Matlab仿真

2024-09-13 13:29:37 1055

原创 Box-Muller法生成正态分布

Box-Muller法生成标准正态分布的个人理解

2024-09-05 17:14:19 270

原创 基于短训练序列的包检测

包检测(Frame Detection)又可以叫粗同步(Coarse Synchronization),是802.11a/g/p一些协议下特定的定时方法。短的用来找到每个OFDM帧(frame)的起点,自动增益控制(Automatic Gain Control,AGC)以及天线选择(Diversity Selection)。长的用来精同步,信道估计。由于短训练存在明显的周期性,因此可以用自相关算法求峰值得到起点的位置,同时我们在时域也可以观察到明显的周期性。

2023-10-30 10:37:10 229 1

原创 基于最大似然估计的OFDM盲同步

对文章ML Estimation of Time and Frequency Offset in OFDM Systems的个人理解

2023-09-25 16:50:18 619 4

原创 【未完成】混合高斯模型

解释了GMM模型如何利用EM方法来求解

2023-03-29 19:10:59 159

原创 利用ADDA实现无监督迁移学习

本次仿真是根据论文和在此基础上提出的进行的。由于ATLA最后采取分类器的分类结果输出,一般维度只有num_classes,感觉对于discriminator来说太少了,很难达到对抗迁移的效果。所以本次仿真在ADDA的基础上取前面CNN网络作为特征提取器,其输出为特征直接输入到判别器上。实验过程中发现由于源数据和目标数据的长度可能不一样,暂时想到先对目标数据进行插值,实现长度相等,经过相同结构的CNN网络投影到同一个特征空间。但是ADDA中提出非对称网络结构会有更好的效果。

2023-03-27 19:43:44 623

原创 【写给自己】成功使用ResNet识别RML2018.a数据集

源码来自[https://blog.csdn.net/qq_34467412/article/details/90738232](https://blog.csdn.net/qq_34467412/article/details/90738232),作者也是对论文作者ResNet框架的复现,而我是在chatGPT帮助下把博主TensorFlow的代码改成了pytorch代码。由于硬件限制,并没有使用完整的数据集,仅对前10种调制模型进行识别,全信噪比情况下测试集识别率可达72%;

2023-03-13 14:34:36 4767 36

原创 【写给自己】成功搭建了ResNet识别MNIST

最后一层不需要softmax输出,直接线性输出即可,因为误差函数交叉熵自带softmax函数。(之前用了softmax输出,导致loss一直在2.4数值附近波动)ResNet,数据为2*N维的IQ信号,先用(3,2)的卷积核对它卷积,得到1维的信号,之后就用(3,1)的卷积核进行卷积。resnet最后一层不需要softmax输出。

2023-02-28 18:46:14 280

原创 【写给自己】搭建cnn识别IQ路调制信号

的完善下,代码终于可以成功跑通。对训练函数进行了完善,之后可以套用这个模板。这样子可以批训练,训练会快很多。同时发现数据可以包装起来。

2023-02-23 19:39:22 333

原创 【写给自己】搭建cnn识别IQ路调制信号

利用IQ两路,信号size为2×128,为了符合CNN处理,先变为1×2×128。数据集来自,本次主要是对论文代码复现,利用pytorch重新写一遍原文基于tensorflow和keras的网络。

2023-01-23 10:23:33 3024 16

原创 【写给自己】自定义自己的数据并调用Torch自带的ResNet网络

训练时候发现,虽然labels是list数据,但是list里面的数据是tensor类型,用torch.save()保存后可能会是乱码,于是先将list里数据转化为numpy,再用numpy.save()保存。并且因为不能用ImageFolder直接导入数据了,因此需要完成继承Dataset,再自定义自己的数据。此时数据不再是one_folder_one_label,本次用的是来自kaggle的dogs-vs-cats。之后进行训练,训练完后仅仅保存网络的参数,而不是完整的网络。训练时间大概是100分钟。

2022-11-24 21:26:10 1732

原创 【写给自己】记录一下第一次搭建简单CNN的过程

【写给自己】记录一下第一次搭建简单CNN的过程

2022-11-22 21:57:18 508

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除