这本书简直封神了!!是入门深度学习最经典的中文教材

近年来,以机器学习、知识图谱为代表的人工智能技术逐渐变得普及。
从车牌识别、人脸识别、语音识别、智能助手、推荐系统到自动驾驶,人们在日常生活中都可能有意无意地用到了人工智能技术。
这些技术的背后都离不开人工智能领域研究者的长期努力。特别是最近这几年,得益于数据的增多、计算能力的增强、学习算法的成熟以及应用场景的丰富,越来越多的人开始关注这个“崭新”的研究领域:深度学习。
因此今天来分享一本邱锡鹏老师的<神经网络与深度学习>给大家
这本书涵盖了从基础的Python编程到深度学习的核心概念,通过深入的学习和实践,有助于读者建立起坚实的神经网络和深度学习基础
在这里插入图片描述

系统地整理了神经网络和深度学习的知识体系。鉴于深度学习涉及的知识点较多,本书从机器学习的基本概念、神经网络模型以及概率图模型三个层面来串联深度学习所涉及的知识点,并提高以深度学习技术来解决实际问题的能力。
⚠️每个章节还有相应课程练习题和示例代码

添加图片注释,不超过 140 字(可选)

主要章节内容👇:

1.绪论
神经网络是一种模拟人脑神经元结构的计算模型,它在机器学习领域扮演着至关重要的角色。邱锡鹏老师的课件深入浅出地讲解了这一主题,尤其对于初学者来说是极好的学习资源。神经网络通过连接大量简单的处理单元(神经元)来解决复杂的计算问题,其核心思想是通过权重和激活函数进行信息的传递和处理。
2.机器学习概述
在神经网络和深度学习中,Python提供了一些强大的框架,如TensorFlow、PyTorch和Keras,这些框架使得构建和训练神经网络变得简单。邱锡鹏老师的课件中可能涵盖了Python的基本语法、数据类型、控制流程以及如何利用Numpy进行矩阵运算等基础知识。

添加图片注释,不超过 140 字(可选)

3.线性模型
4.前馈神经网络
5.卷积神经网络
卷积神经网络是深度学习在图像处理中的主要工具,其核心是卷积层和池化层。卷积层能捕获图像的局部特征,而池化层则用于降低数据维度,提高计算效率。邱老师可能会介绍如何构建CNN,并分析其在图像分类和物体检测中的应用

添加图片注释,不超过 140 字(可选)

6.循环神经网络
7.网络优化与正则化
8.注意力机制与外部记忆

添加图片注释,不超过 140 字(可选)

9.无监督学习
10.模型独立的学习方式
11.概率图模型

添加图片注释,不超过 140 字(可选)

12.深度信念网络
13.深度生成模型
14.深度强化学习
15.序列生成模型

添加图片注释,不超过 140 字(可选)

16.数学基础

添加图片注释,不超过 140 字(可选)

理论知识的掌握需要通过实践来巩固。邱老师可能提供了实际的项目或案例,让学生应用所学知识解决真实世界的问题,如使用深度学习进行图像分类或自然语言理解。
该书目前豆瓣评分 9.7 分,是入门深度学习最经典的几本中文教材之一,为了方便学习,我们整理了 pdf 供大家下载:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值