【每日一题】741. 摘樱桃-2024.5.6

文章描述了一个问题,玩家从网格的左上角出发,按指定规则摘樱桃并返回原点,要求计算在给定网格中最多能摘到的樱桃数。使用动态规划方法求解,通过状态转移方程更新每个位置的最优值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

741. 摘樱桃

给你一个 n x n 的网格 grid ,代表一块樱桃地,每个格子由以下三种数字的一种来表示:

  • 0 表示这个格子是空的,所以你可以穿过它。
  • 1 表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。
  • -1 表示这个格子里有荆棘,挡着你的路。

请你统计并返回:在遵守下列规则的情况下,能摘到的最多樱桃数:

  • 从位置 (0, 0) 出发,最后到达 (n - 1, n - 1) ,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为 0 或者 1 的格子);
  • 当到达 (n - 1, n - 1) 后,你要继续走,直到返回到 (0, 0) ,只能向上或向左走,并且只能穿越有效的格子;
  • 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为 0 );
  • 如果在 (0, 0) 和 (n - 1, n - 1) 之间不存在一条可经过的路径,则无法摘到任何一个樱桃。

示例 1:

输入:grid = [[0,1,-1],[1,0,-1],[1,1,1]]
输出:5
解释:玩家从 (0, 0) 出发:向下、向下、向右、向右移动至 (2, 2) 。
在这一次行程中捡到 4 个樱桃,矩阵变成 [[0,1,-1],[0,0,-1],[0,0,0]] 。
然后,玩家向左、向上、向上、向左返回起点,再捡到 1 个樱桃。
总共捡到 5 个樱桃,这是最大可能值。

示例 2:

输入:grid = [[1,1,-1],[1,-1,1],[-1,1,1]]
输出:0

提示:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 50
  • grid[i][j] 为 -10 或 1
  • grid[0][0] != -1
  • grid[n - 1][n - 1] != -1

解答:

 

代码:

class Solution {
    public int cherryPickup(int[][] grid) {
        int n=grid.length;
        int[][] f=new int[n][n];
        for(int i=0;i<n;i++){
            Arrays.fill(f[i],Integer.MIN_VALUE);
        }
        f[0][0]=grid[0][0];
        for(int k=1;k<n*2-1;k++){
            for(int x1=Math.min(k,n-1);x1>=Math.max(k-n+1,0);x1--){
                for(int x2=Math.min(k,n-1);x2>=x1;x2--){
                    int y1=k-x1,y2=k-x2;
                    if(grid[x1][y1]==-1||grid[x2][y2]==-1){
                        f[x1][x2]=Integer.MIN_VALUE;
                        continue;
                    }
                    int res=f[x1][x2];//都往右
                    if(x1>0) res=Math.max(res,f[x1-1][x2]);//往下,往右
                    if(x2>0) res=Math.max(res,f[x1][x2-1]);//往右,往下
                    if(x1>0&&x2>0) res=Math.max(res,f[x1-1][x2-1]);//都往下
                    res+=grid[x1][y1];
                    if(x2!=x1){//避免重复摘同一个樱桃
                        res+=grid[x2][y2];
                    }
                    f[x1][x2]=res;
                }
            }
        }
        return Math.max(f[n-1][n-1],0);
    }
}

结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轩軒轩儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值