python pandas中的apply函数

apply函数主要用于对DataFrame中的行或者列进行特定的函数计算。

>>> df = pd.read_excel(r'D:/myExcel/1.xlsx')
>>> df
   A   B   C
0  1  12  45
1  1  15  23
2  1  34  88
3  1  98  23
# 下面将会对每一列求平均值
>>> df.apply(np.mean)
A     1.00
B    39.75
C    44.75
# 当指定axis=1时,将会对每行进行求平均计算
>>> df.apply(np.mean, axis=1)
0    19.333333
1    13.000000
2    41.000000
3    40.666667
# 接受自定义的匿名函数
>>> df.apply(lambda x : x.max() - x.mean())
A     0.00
B    58.25
C    43.25
dtype: float64
# 如果没有使用聚集函数,将会对df每个值进行运算
>>> df.apply(lambda x : x + 1)
   A   B   C
0  2  13  46
1  2  16  24
2  2  35  89
3  2  99  24

# 自定义的函数及其传参方式
>>> def subtract_and_divide(x, sub, divide=1):
	return (x - sub) / divide

>>> df.apply(subtract_and_divide, args=(5,), divide=3)
          A          B          C
0 -1.333333   2.333333  13.333333
1 -1.333333   3.333333   6.000000
2 -1.333333   9.666667  27.666667
3 -1.333333  31.000000   6.000000

# 仅对部分列进行操作
>>> df[['A', 'B']].apply(subtract_and_divide, args=(5,), divide=3)
          A          B
0 -1.333333   2.333333
1 -1.333333   3.333333
2 -1.333333   9.666667
3 -1.333333  31.000000

哈哈,以上就是pandas关于apply函数的介绍,有兴趣的话欢迎关注:python小工具。一起学习python和pandas
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值