index<-c("低收入户","中等偏下户","中等收入户","中等偏上户","高收入户")
year2008<-c(1500,2935,4203,5929,11290)
year2009<-c(1549,3110,4502,6468,12319)
year2010<-c(1870,3621,5222,7441,14050)
year2011<-c(2001,4256,6208,8894,16783)
year2012<-c(2316,4808,7041,10142,19009)
tt<-data.frame("指标"=index,"2008年"=year2008,"2009年"=year2009,"2010年"=year2010,"2011年"=year2011,"2012年"=year2012)
tt
save(tt,file="F:/统计学/实验作业/tt.RData")
load("F:/统计学/实验作业/tt.RData")
matrix1_1<-as.matrix(tt[,2:6])
rownames(matrix1_1)=tt[,1]
save(matrix1_1,file="F:/统计学/实验作业/matrix.RData")
matrix1_1
基础知识:
1.为对象赋值
2.对对象X进行各种计算和绘图
3.R包的安装和加载
查看
在线安装所需包一次安装多个包
要使用包,需要用library()函数或者require()函数载入这个包
4.在R中录入数据
(1)用C函数产生向量
例:names<-c(“张三”,“李四”,“王五”)
(2)将向量形式的数据组织转换成数据框模式
例:table<-data.frame(“姓名”=names,···)
table
(3)将向量形式的数据转组织成矩阵
(4)在R中录入数据并组织成矩阵
5. 读取R数据
load(“load(“存储路径 /文件名字.RData”)”)
读取包含标题的csv文件
read.csv(“存储路径 /文件名字.csv”)
读取不包含标题的csv文件
read.csv(“存储路径 /文件名字.csv”,header=FALSE)
导入Excel数据
导入spss数据
6.保存数据
R格式
save(table,file=“存储路径 /table.RData”)
csv格式
write.csv(table,file=“存储路径 /table.csv”)
7.查看数据
全部
table
前几行
head(table)
最后几行
tail(table)
8.数据排序
升序:newt1<-t[order(t
地
区
生
产
总
值
)
,
]
降
序
:
n
e
w
t
2
<
−
t
[
o
r
d
e
r
(
−
t
地区生产总值),] 降序:newt2<-t[order(-t
地区生产总值),]降序:newt2<−t[order(−t地区生产总值),]
或者:newt2<-t[order(t$地区生产总值),decreasing=TRUE]
变量重命名:
library(reshape)
rename(t,c(“地区生产总值”=“GDP”))
缺失值的处理:
检测:x<-c(2,4,6,NA)
is.na(x)
排除:x<-c(2,4,6,NA)
sum(x)
y<-sum(x,na.rm=TRUE)