datawhale李宏毅机器学习笔记
文章平均质量分 76
李宏毅机器学习笔记
零露_
这个作者很懒,什么都没留下…
展开
-
机器学习李宏毅笔记CNN
CNN我们都知道CNN常常被用在影像处理上,如果你今天用CNN来做影像处理,当然也可以用一般的neural network来做影像处理,不一定要用CNN。比如说你想要做影像的分类,那么你就是training一个neural network,input一张图片,那么你就把这张图片表示成里面的pixel,也就是很长很长的vector。output就是(假如你有1000个类别,output就是1000个dimension)dimension。那我相信根据刚才那堂课内容,若给你一组training data你都可原创 2021-07-23 16:09:43 · 449 阅读 · 0 评论 -
李宏毅机器学习笔记-网络设计技巧
李宏毅机器学习笔记-网络设计技巧1 局部最小Loss在局部最小值或者鞍点处,梯度为0,因此没法继续下降。在局部最小值处,没有路可走,无法逃出来,但是在鞍点处,是可以走出来的,因此在梯度为0处要判断是否是鞍点。1.1 利用Hessian矩阵判断鞍点将Loss方程泰勒展开,其中二次项的系数矩阵,就是Hessian矩阵:如下图所示当Hessian矩阵是正定阵或负定阵时,该点是局部最小值,否则,该点是鞍点。1.2 实例如下图所示,将w1,w2以及loss画在同一张图中,其中颜色越深代表lo原创 2021-07-21 20:27:00 · 514 阅读 · 0 评论 -
李宏毅机器学习笔记-深度学习
李宏毅机器学习笔记-深度学习1 深度学习的三个步骤deep learning与机器学习类似,也有3个步骤:Step1:神经网络(Neural network)Step2:模型评估(Goodness of function)Step3:选择最优函数(Pick best function)那对于深度学习的Step1就是神经网络(Neural Network)1.1神经网络神经网络(Neural network)里面的节点,类似我们的神经元。神经网络也可以有很多不同的连接方式,这样就会产生原创 2021-07-19 00:00:08 · 490 阅读 · 0 评论 -
李宏毅机器学习笔记-误差与梯度下降
李宏毅机器学习笔记-误差与梯度下降1 误差、偏差、方差1.1 误差来源误差主要有两个来源:分别是 biasbiasbias 和 variancevariancevariance 。其中f^\hat ff^ 就是我们的靶心(真实值),f∗f^*f∗ 就是我们投掷的结果(预测值)。如上图所示,f^\hat ff^ 与 f∗f^*f∗ 之间蓝色部分的差距就是偏差和方差导致的。1.2估测变量x的偏差与方差对于随机变量xxx,平均值是 μ\muμ,方差为 σ2\sigma^2σ2从总体中抽取N原创 2021-07-16 11:52:21 · 275 阅读 · 0 评论 -
李宏毅机器学习笔记-回归
李宏毅机器学习笔记-回归1 一元线性回归与多元线性回归回归:Regression 就是找到一个函数 functionfunctionfunction ,通过输入特征 xxx,输出一个数值 ScalarScalarScalar。一元线性回归:以一个特征 xcpx_{cp}xcp 为例,线性模型假设 y=b+w⋅xcpy = b + w·x_{cp}y=b+w⋅xcp ;当xcpx_{cp}xcp有多个特征时,线性模型:y=b+∑w⋅xcpy = b + \sum w·x_{cp}y=b+∑w⋅xc原创 2021-07-14 12:56:17 · 197 阅读 · 0 评论 -
datawhale组队学习-李宏毅机器学习笔记-1
原创 2021-07-12 20:41:16 · 145 阅读 · 0 评论