自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 PyTorch实现yolov3

PyTorch实现yolov3yolo系列是目标识别的重头戏为了更好的理解掌握它,我们必须从源码出发深刻理解代码。下面我们来讲解pytorch实现的yolov3源码。创建YOLO网络首先我们知道yolov3将resnet改造变成了具有更好性能的Darknet作为它的backbone,称为darknet。配置文件官方代码(authored in C)使用一个配置文件来构建网络,即 cfg 文件一块块地描述了网络架构。我们开始要做的就是用pytorch来读取网络结构形成自己的module进行前向与反向

2020-12-20 16:25:45 1695 3

转载 3D-UNet的Pytorch实现

3D-UNet的Pytorch实现本文主要介绍3DUNet网络,及其在LiTS2017肝脏肿瘤数据集上训练的Pytorch实现代码。GitHub地址:添加链接描述LiTS2017数据集 链接:添加链接描述提取码:hfl8 (++||…==’’。。。_)一.3DUNet简介最近重新整理了一下关于3DUNet网络原理及代码,这个网络其实和2DUNet区别不大,简单说可以理解为2d卷积换为了3d卷积。整体上没有什么创新,但可以基于一套完整的3DUNet代码(包括预处理、训练、可视化、测试等等)可以

2020-12-08 10:05:16 15306 26

转载 Faster R-CNN 环境配置:

Faster R-CNN环境配置:Python3.6或者3.7Pytorch1.6(注意:必须是1.6.0或以上,因为使用官方提供的混合精度训练1.6.0后才支持)pycocotools(Linux: pip install pycocotools; Windows:pip install pycocotools-windows(不需要额外安装vs))Ubuntu或Centos(不建议Windows)最好使用GPU训练文件结构:├──backbone: 特征提取网络,可以根据自己的

2020-10-21 15:30:23 869 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除