- 博客(3)
- 收藏
- 关注
原创 PyTorch实现yolov3
PyTorch实现yolov3yolo系列是目标识别的重头戏为了更好的理解掌握它,我们必须从源码出发深刻理解代码。下面我们来讲解pytorch实现的yolov3源码。创建YOLO网络首先我们知道yolov3将resnet改造变成了具有更好性能的Darknet作为它的backbone,称为darknet。配置文件官方代码(authored in C)使用一个配置文件来构建网络,即 cfg 文件一块块地描述了网络架构。我们开始要做的就是用pytorch来读取网络结构形成自己的module进行前向与反向
2020-12-20 16:25:45 1695 3
转载 3D-UNet的Pytorch实现
3D-UNet的Pytorch实现本文主要介绍3DUNet网络,及其在LiTS2017肝脏肿瘤数据集上训练的Pytorch实现代码。GitHub地址:添加链接描述LiTS2017数据集 链接:添加链接描述提取码:hfl8 (++||…==’’。。。_)一.3DUNet简介最近重新整理了一下关于3DUNet网络原理及代码,这个网络其实和2DUNet区别不大,简单说可以理解为2d卷积换为了3d卷积。整体上没有什么创新,但可以基于一套完整的3DUNet代码(包括预处理、训练、可视化、测试等等)可以
2020-12-08 10:05:16 15306 26
转载 Faster R-CNN 环境配置:
Faster R-CNN环境配置:Python3.6或者3.7Pytorch1.6(注意:必须是1.6.0或以上,因为使用官方提供的混合精度训练1.6.0后才支持)pycocotools(Linux: pip install pycocotools; Windows:pip install pycocotools-windows(不需要额外安装vs))Ubuntu或Centos(不建议Windows)最好使用GPU训练文件结构:├──backbone: 特征提取网络,可以根据自己的
2020-10-21 15:30:23 869 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人