一个01矩阵中求边长为k的全1的矩阵的个数

该代码实现了一个函数,使用动态规划方法计算给定01矩阵中,边长为k的全为1的正方形矩阵的个数。首先初始化一个辅助矩阵aux,然后遍历矩阵,根据矩阵元素和相邻元素的值更新aux,最后统计边长达到k的正方形数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1,如果i>0且j>0
    递推公式的含义是,以(i, j)为右下角的正方形的边长,取决于其左上方、上方、左方的正方形的最大边长,取最小值再加1即可。
  • 有了dp数组之后,只需要遍历矩阵中的每个位置,更新dp数组的值,同时统计边长为k的全为1的正方形矩阵的个数或者找到其中一个最大的全为1正方形矩阵。
def count_squares(matrix, k):
    """
    :param matrix: 01矩阵
    :param k: 正方形边长
    :return: 边长为k的全为1的正方形矩阵的个数
    """
    if not matrix:
        return 0
    m, n = len(matrix), len(matrix[0])
    # 初始化辅助矩阵,aux[i][j]表示以(i, j)为右下角的最大正方形边长
    aux = [[0] * n for _ in range(m)]
    # 初始化结果变量
    count = 0
    # 对矩阵中的每个位置进行处理
    for i in range(m):
        for j in range(n):
            # 如果matrix[i][j]为0,则aux[i][j]为0
            if matrix[i][j] == 0:
                aux[i][j] = 0
            else:
                # 如果matrix[i][j]为1,则计算以(i, j)为右下角的最大正方形边长
                if i == 0 or j == 0:
                    aux[i][j] = 1
                else:
                    # 如果matrix[i][j]为1,则aux[i][j]为aux[i-1][j-1]+1
                    aux[i][j] = min(aux[i-1][j-1], aux[i-1][j], aux[i][j-1]) + 1
            # 如果以(i, j)为右下角的正方形边长达到k,则计数器加1
            if aux[i][j] >= k:
                count += 1
    # 返回计数器的值
    return count

# 测试用例1
matrix1 = [[1, 1, 1],
           [1, 1, 1],
           [1, 1, 1]]
k1 = 2
print(count_squares(matrix1, k1)) # 4
# 测试用例2
matrix2 = [[1, 1, 1, 0, 0],
           [1, 1, 1, 0, 0],
           [1, 1, 1, 1, 1],
           [0, 1, 1, 1, 1]]
k2 = 2
print(count_squares(matrix2, k2)) #7
# 测试用例3
matrix3 = [[1, 1, 1, 0, 0],
           [1, 1, 1, 0, 0],
           [1, 1, 1, 1, 1],
           [0, 1, 1, 1, 1]]
k3 = 3
print(count_squares(matrix3, k3)) # 1
# 测试用例4
matrix4 = [[1, 1, 1],
           [1, 0, 1],
           [1, 1, 1]]
k4 = 2
print(count_squares(matrix4, k4)) # 0
# 测试用例5
matrix5 = [[1, 1, 1],
           [1, 0, 1],
           [1, 0, 1]]
k5 = 2
print(count_squares(matrix5, k5)) # 0

# 测试用例6
matrix6=[[0,0,0,0,0],
        [0,1,1,1,1],
        [0,1,1,1,1],
        [0,1,0,0,1],
        [0,1,1,1,1]]
k6 = 2
print(count_squares(matrix6, k6)) # 3

matrix7=[]
k7=1
print(count_squares(matrix7, k7)) # 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值