【机器学习】算法原理详细推导与实现(五):支持向量机(下)

【机器学习】算法原理详细推导与实现(五):支持向量机(下)

上一章节介绍了支持向量机的生成和求解方式,能够根据训练集依次得出 ω \omega ω b b b的计算方式,但是如何求解需要用到核函数,将在这一章详细推导实现。

核函数

在讲核函数之前,要对上一章节得到的结果列举出来。之前需要优化的凸函数为:

m i n γ , ω , b − > 1 2 ∣ ∣ ω ∣ ∣ 2 min_{\gamma,\omega,b}->\frac{1}{2}||\omega||^2 minγ,ω,b>21ω2

y ( i ) ( ω T x ( i ) + b ) ≥ 1 , i = 1 , 2 , . . . , m y^{(i)}(\omega^Tx^{(i)}+b) \geq 1 ,i=1,2,...,m y(i)(ωTx(i)+b)1,i=1,2,...,m

这里假设数据是线性可分隔的,对于这个优化项目,给定一个训练集合,这个问题的算法会找到一个数据集合的最优间隔分类器,可以使训练样本的几何间隔最大化。

在上一章节【机器学习】算法原理详细推导与实现(四):支持向量机(上)中,我们推出了这个问题的对偶问题,也就是要使这个式子最大化:

m a x α Γ ( ω , b , α ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y ( i ) y ( j ) < x ( i ) , x ( j ) > max_{\alpha}\Gamma(\omega,b,\alpha)=\sum_{i=1}^m\alpha_i-\frac{1}{2}\sum^m_{i=1,j=1}\alpha_i\alpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> maxαΓ(ω,b,α)=i=1mαi21i=1,j=1mαiαjy(i)y(j)<x(i),x(j)>

α i ≥ 0 , i = 1 , 2 , . . . , m \alpha_i \geq 0,i=1,2,...,m αi0,i=1,2,...,m

∑ i = 1 m α i y ( i ) = 0 \sum_{i=1}^m\alpha_iy^{(i)}=0 i=1mαiy(i)=0

上面是我们的原始问题,且根据拉格朗日对偶步骤计算得到参数 ω \omega ω

ω = ∑ i = 1 m α i y ( i ) x ( i ) \omega=\sum^m_{i=1}\alpha_iy^{(i)}x^{(i)} ω=i=1mαiy(i)x(i)

b = m a x i : y ( i ) = − 1 ω T x ( i ) + m i n i : y ( i ) = 1 ω T x ( i ) 2 b=\frac{max_{i:y^{(i)}=-1}\omega^Tx^{(i)}+min_{i:y^{(i)}=1}\omega^Tx^{(i)}}{2} b=2maxi:y(i)=1ωTx(i)+mini:y(i)=1ωTx(i)

当需要做分类预测时,需要对新来的输入值 x x x进行计算,计算其假设的值是否大于零,也就是做一次线性运算来判断是正样本还是负样本,有如下计算函数:

h ω , b ( x ) = g ( ω T x + b ) = g ( ∑ i = 1 m α i y ( i ) < x ( i ) , x > + b ) \begin{aligned} h_{\omega,b}(x)&=g(\omega^Tx+b) \\ &=g(\sum^m_{i=1}\alpha_iy^{(i)}<x^{(i)},x>+b) \end{aligned} hω,b(x)=g(ωTx+b)=g(i=1mαiy(i)<x(i),x>+b)

核函数概念

接下来要介绍“核”的概念,这个概念具有这样的性质:

算法对于x的依赖仅仅局限于这些内积的计算,甚至在整个算法中,都不会直接使用到向量x的值,而是只需要用到训练样本与输入特征向量的内积

而“核”的概念是这样的,考虑到最初在【机器学习】算法原理详细推导与实现(一):线性回归中提出的问题,比如有一个输入 x ∈ R x\in R xR是房屋的面积, y y y是房子的价格。假设我们从样本点的分布中看到 x x x y y y符合3次曲线,那么我们会希望使用 x x x的三次多项式来逼近这些样本点。首先将特征 x x x扩展到三维 ( x , x 2 , x 3 ) (x,x^2,x^3) (x,x2,x3),这里将这种特征变换称作特征映射,映射函数为 φ ( x ) \varphi(x) φ(x)

φ ( x ) = [ x x 2 x 3 ] \varphi(x)=\begin{bmatrix} x \\ x^2 \\ x^3 \end{bmatrix} φ(x)=xx2x3

φ ( x ) \varphi(x) φ(x)代表原来的特征 x x x映射成的,这里希望得到映射后的特征应用于svm分类,而不是最初的一维特征,只需要将前面 ω T x + b \omega^Tx+b ωTx+b公式中的内积从 < x ( i ) , x ( j ) > <x^{(i)},x^{(j)}> <x(i),x(j)>映射到 < φ ( x ) ( i ) , φ ( x ) ( j ) > <\varphi(x)^{(i)},\varphi(x)^{(j)}> <φ(x)(i),φ(x)(j)>至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的一个原因:为了更好的拟合,另外一个原因是样本可能存在线性不可分的情况,而特征映射到高维过后往往就可分了

如果原始特征的内积为 < x , z > <x,z> <x,z>,映射后为 < φ ( x ) , φ ( z ) > <\varphi(x),\varphi(z)> <φ(x),φ(z)>,那么一般核函数定义为:

K ( x , z ) = φ ( x ) T φ ( z ) K(x,z)=\varphi(x)^T\varphi(z) K(x,z)=φ(x)Tφ(z)

为什么会那么定义核函数?有些时候 φ ( x ) \varphi(x) φ(x)的维度将会非常的高,可能会包含非常高维的多项式特征,甚至会到无限维。当 φ ( x ) \varphi(x) φ(x)的维度非常高时,可能无法高效的计算内积,甚至无法计算。如果要求解前面所提到的凸函数,只需要先计算 φ ( x ) \varphi(x) φ(x),然后再计算 φ ( x ) T φ ( z ) \varphi(x)^T\varphi(z) φ(x)Tφ(z)即可,但是这种常规方法是很低效的,比如最开始的特征是 n n n维,并将其映射到 n 2 n^2 n2维度,这时候计算需要 O ( n 2 ) O(n^2) O(n2)的时间复杂度。这里假设 x x x z z z都是 n n n维的:

K ( x , z ) = ( x T z ) 2 K(x,z)=(x^Tz)^2 K(x,z)=(xTz)2

展开后得到:

K ( x , z ) = ( x T z ) 2 = ( ∑ i = 1 n x i z i ) ( ∑ j = 1 n x j z j ) = ∑ i = 1 n ∑ j = 1 n x i x j z i z j = ∑ i = 1 n ∑ j = 1 n ( x i x j ) ( z i z j ) = φ ( x ) T φ ( z ) \begin{aligned} K(x,z)&=(x^Tz)^2 \\ &=(\sum^n_{i=1}x_iz_i)(\sum^n_{j=1}x_jz_j) \\ &=\sum^n_{i=1}\sum^n_{j=1}x_ix_jz_iz_j \\ &=\sum^n_{i=1}\sum^n_{j=1}(x_ix_j)(z_iz_j) \\ &=\varphi(x)^T\varphi(z) \end{aligned} K(x,z)=(xTz)2=(i=1nxizi)(j=1nxjzj)=i=1nj=1nxixjzizj=i=1nj=1n(xixj)(zizj)=φ(x)Tφ(z)

也就是说,如果开始的特征是 n n n维,并将其映射到 n 2 n^2 n2维度后,其映射后的计算量为 O ( n 2 ) O(n^2) O(n2)。而如果只是计算原始特征 x x x z z z的内积平方,时间复杂度还是 O ( n ) O(n) O(n),其结果等价于映射后的特征内积。

回到之前的假设,当 n = 3 n=3 n=3时,这个核 K ( x , z ) K(x,z) K(x,z)对应的特征映射 φ ( x ) \varphi(x) φ(x)为:

φ ( x ) = [ x 1 x 1 x 1 x 2 x 1 x 3 x 2 x 1 x 2 x 2 x 2 x 3 x 3 x 1 x 3 x 2 x 3 x 3 ] \varphi(x)=\begin{bmatrix} x_1x_1 \\ x_1x_2 \\ x_1x_3 \\ x_2x_1 \\ x_2x_2 \\ x_2x_3 \\ x_3x_1 \\ x_3x_2 \\ x_3x_3 \end{bmatrix} φ(x)=x1x1x1x2x1x3x2x1x2x2x2x3x3x1x3x2x3x3

这是时间复杂度为 O ( n 2 ) O(n^2) O(n2)计算方式,而如果不计算 φ ( x ) \varphi(x) φ(x),直接计算 < x , z > <x,z> <x,z>从而得到< φ ( x ) \varphi(x) φ(x), φ ( z ) \varphi(z) φ(z)>的内积,时间复杂度将缩小 O ( n ) O(n) O(n)

同理将核函数定义为:

K ( x , z ) = ( x T z + c ) = ∑ i , j = 1 n ( x i x j ) ( z i z j ) + ∑ i = 1 n ( 2 c x i ) ( 2 c x j ) + c 2 \begin{aligned} K(x,z)&=(x^Tz+c) \\ &=\sum^n_{i,j=1}(x_ix_j)(z_iz_j)+\sum^n_{i=1}(\sqrt{2cx_i})(\sqrt{2cx_j})+c^2 \end{aligned} K(x,z)=(xTz+c)=i,j=1n(xixj)(zizj)+i=1n(2cxi )(2cxj )+c2

n = 3 n=3 n=3时,这个核 K ( x , z ) K(x,z) K(x,z)对应的特征映射 φ ( x ) \varphi(x) φ(x)为:

φ ( x ) = [ x 1 x 1 x 1 x 2 x 1 x 3 x 2 x 1 x 2 x 2 x 2 x 3 x 3 x 1 x 3 x 2 x 3 x 3 2 c x 1 2 c x 2 2 c x 3 c ] \varphi(x)=\begin{bmatrix} x_1x_1 \\ x_1x_2 \\ x_1x_3 \\ x_2x_1 \\ x_2x_2 \\ x_2x_3 \\ x_3x_1 \\ x_3x_2 \\ x_3x_3 \\ \sqrt{2c}x_1 \\ \sqrt{2c}x_2 \\ \sqrt{2c}x_3 \\ c \end{bmatrix} φ(x)=x1x1x1x2x1x3x2x1x2x2x2x3x3x1x3x2x3x32c x12c x22c x3c

总结来说,核的一种一般化形式可以表示为:

K ( x , z ) = ( x T z + c ) d K(x,z)=(x^Tz+c)^d K(x,z)=(xTz+c)d

对应着 [ n + d d ] \begin{bmatrix} n+d \\ d \end{bmatrix} [n+dd] 个特征单项式,即特征维度。

假如给定一组特征 x x x,将其转化为一个特征向量 φ ( x ) \varphi(x) φ(x);给定一组特征 z z z,将其转化为一个特征向量 φ ( z ) \varphi(z) φ(z),所以核计算就是两个向量的内积 < φ ( x ) , φ ( z ) > <\varphi(x),\varphi(z)> <φ(x),φ(z)>。如果 φ ( x ) \varphi(x) φ(x) φ ( z ) \varphi(z) φ(z)向量夹角越小,即两个向量越相似(余弦定理),那么 φ ( x ) \varphi(x) φ(x) φ ( z ) \varphi(z) φ(z)将指向相同的方向,因此内积会比较大;相反的如果 φ ( x ) \varphi(x) φ(x) φ ( z ) \varphi(z) φ(z)向量夹角越大,即两个向量相似度很低,那么 φ ( x ) \varphi(x) φ(x) φ ( z ) \varphi(z) φ(z)将指向不同的方向,因此内即将会比较小。

如果有一个核函数如下:

K ( x , z ) = e x p ( − ∣ ∣ x − z ∣ ∣ 2 2 σ 2 ) K(x,z)=exp^{(-\frac{||x-z||^2}{2\sigma^2})} K(x,z)=exp(2σ2xz2)

如果 x x x z z z很相近( ∣ ∣ x − z ∣ ∣ ≈ 0 ||x-z||\approx0 xz0),那么核函数的值为1;如果 x x x z z z相差很大( ∣ ∣ x − z ∣ ∣ > > 0 ||x-z||>>0 xz>>0),那么核函数的值约等于0。这个核函数类似于高斯分布,所以称为高斯核函数,能够把原始特征映射到无穷维。

在前面说了:为什么需要映射后的特征而不是最初的特征来参与计算?

上面提到了两个原因:

  1. 为了更好的拟合
  2. 样本可能存在线性不可分的情况,而特征映射到高维过后往往就可分了

第二种情况如下所示:

左边使用线性的时候,使用svm学习出 ω \omega ω b b b后,新来样本 x x x就可以代入到 ω T x + b \omega^Tx+b ωTx+b中进行判断,但是像图中所示是无法判断的;如果使用了核函数过后, ω T x + b \omega^Tx+b ωTx+b变成了 ω T φ ( x ) + b \omega^T\varphi(x)+b ωTφ(x)+b,直接可以用下面的方式计算:

ω T x + b = ( ∑ i = 1 m α i y ( i ) x ( i ) ) T x + b = ∑ i = 1 m α i y ( i ) < x ( i ) , x > + b = ∑ i = 1 m α i y ( i ) K ( x ( i ) ) + b \begin{aligned} \omega^Tx+b&=(\sum^m_{i=1}\alpha_iy^{(i)}x^{(i)})^Tx+b \\ &=\sum^m_{i=1}\alpha_iy^{(i)}<x^{(i)},x>+b \\ &=\sum^m_{i=1}\alpha_iy^{(i)}K(x^{(i)})+b \end{aligned} ωTx+b=(i=1mαiy(i)x(i))Tx+b=i=1mαiy(i)<x(i),x>+b=i=1mαiy(i)K(x(i))+b

只需要将 < x ( i ) , x > <x^{(i)},x> <x(i),x>替换成 K ( x ( i ) ) K(x^{(i)}) K(x(i))就能将低维特征转化为高维特征,将线性不可分转化成高维可分。

规则化和不可分情况处理

我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。

看下面的图可以解释:

在右边的图可以可以看到上面一个离群点(可能是噪声),会造成超平面的移动改变,使集合间隔的间隔距离缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。 这时候我们应该允许一些点游离在模型中违背限制条件(函数间隔大于 1)。我们设计得到新的模型如下(也称软间隔):

m i n γ , ω , b − > 1 2 ∣ ∣ ω ∣ ∣ 2 + C ∑ i = 1 m ξ i min_{\gamma,\omega,b}->\frac{1}{2}||\omega||^2+C\sum^m_{i=1}\xi_i minγ,ω,b>21ω2+Ci=1mξi

y ( i ) ( ω T x ( i ) + b ) ≥ 1 − ξ i , i = 1 , 2 , . . . , m y^{(i)}(\omega^Tx^{(i)}+b) \geq 1-\xi_i ,i=1,2,...,m y(i)(ωTx(i)+b)1ξi,i=1,2,...,m

ξ i ≥ 0 , i = 1 , . . . , m \xi_i \geq 0,i=1,...,m ξi0,i=1,...,m

引入非负参数 ξ i \xi_i ξi(松弛变量)过后,也就意味着允许某些样本的函数间隔小于1,甚至是负数,负数就代表样本点在对方区域中,如上方右边图的虚线作为超平面,一个空心圆点的函数间隔为负数。

增加新的条件后,需要重新调整目标函数,增加对离群点进行处罚,也就是在求最小值的目标函数后面加上 C ∑ i = 1 m ξ i C\sum^m_{i=1}\xi_i Ci=1mξi,因为定义 ξ i ≥ 0 \xi_i \geq 0 ξi0,所以离群点越多,那么目标函数的值越大,就等于违背求最小值的初衷。而 C C C是离群点的权重, C C C越大表明离群点对于目标函数的影响越大,也就是越不希望看到离群点。

修改目标函数后,原式子变成:

Γ ( ω , b , ξ , α , r ) = 1 2 ω T ω + C ∑ i = 1 m ξ i − ∑ i = 1 m α i [ y ( i ) ( x T ω + b ) − 1 + ξ i ] − ∑ i = 1 m r i ξ i \Gamma(\omega,b,\xi,\alpha,r)=\frac{1}{2}\omega^T\omega+C\sum^m_{i=1}\xi_i-\sum^m_{i=1}\alpha_i[y^{(i)}(x^T\omega+b)-1+\xi_i]-\sum^m_{i=1}r_i\xi_i Γ(ω,b,ξ,α,r)=21ωTω+Ci=1mξii=1mαi[y(i)(xTω+b)1+ξi]i=1mriξi

这里的 α \alpha α r r r都是拉格朗日算子,根据上一章节拉格朗日的求解步骤:

  1. 构造出拉格朗日函数后,将其看作是变量 ω \omega ω b b b的函数
  2. 分别对其求偏导,得到 ω \omega ω b b b的表达式
  3. 然后带入上述拉格朗日式子中,求带入后式子的极大值

最后化简得到的结果是:

m a x α W ( α ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y ( i ) y ( j ) < x ( i ) , x ( j ) > max_{\alpha}W(\alpha)=\sum_{i=1}^m\alpha_i-\frac{1}{2}\sum^m_{i=1,j=1}\alpha_i\alpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> maxαW(α)=i=1mαi21i=1,j=1mαiαjy(i)y(j)<x(i),x(j)>

C ≥ α i ≥ 0 , i = 1 , 2 , . . . , m C \geq \alpha_i \geq 0,i=1,2,...,m Cαi0,i=1,2,...,m

∑ i = 1 m α i y ( i ) = 0 \sum_{i=1}^m\alpha_iy^{(i)}=0 i=1mαiy(i)=0

这里唯一不同的地方是限制条件多了一个离群点的权重 C C C

SMO优化算法

SMO 是一个求解对偶问题的优化算法,目前还剩下最后的对偶问题还未解决:

m a x α W ( α ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y ( i ) y ( j ) < x ( i ) , x ( j ) > max_{\alpha}W(\alpha)=\sum_{i=1}^m\alpha_i-\frac{1}{2}\sum^m_{i=1,j=1}\alpha_i\alpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> maxαW(α)=i=1mαi21i=1,j=1mαiαjy(i)y(j)<x(i),x(j)>

C ≥ α i ≥ 0 , i = 1 , 2 , . . . , m C \geq \alpha_i \geq 0,i=1,2,...,m Cαi0,i=1,2,...,m

∑ i = 1 m α i y ( i ) = 0 \sum_{i=1}^m\alpha_iy^{(i)}=0 i=1mαiy(i)=0

我们需要根据上述问题设计出一个能够高效解决的算法,步骤如下:

  1. 首先选择两个要改变的 α \alpha α α i \alpha_i αi α j \alpha_j αj
  2. 其次保持除了 α i \alpha_i αi α j \alpha_j αj之外的所有参数固定
  3. 最后同时相对于这两个参数使 ω \omega ω取最优,且同时满足所有约束条件

怎样在满足所有约束条件的情况下,相对于选出来的两个参数 α i \alpha_i αi α j \alpha_j αj使 ω \omega ω取最优值?SMO优化算法能够高效完成这个工作。SMO算法非常的高效,只需要更多次数的迭代以达到收敛,而且每次迭代所需要的代价都非常小。

为了推出这个步骤,我们需要相对于 α i \alpha_i αi α j \alpha_j αj进行更新,假设取值是 α 1 \alpha_1 α1 α 2 \alpha_2 α2,即假设 α 1 \alpha_1 α1 α 2 \alpha_2 α2不再是变量(可以由其他值推出),可以根据约束条件推导得到:

∑ i = 1 m α i y ( i ) = 0 α 1 y 1 + α 2 y 2 = − ∑ i = 3 m α i y ( i ) \begin{aligned} \sum_{i=1}^m\alpha_iy^{(i)}&=0 \\ \alpha_1y_1+\alpha_2y_2&=-\sum_{i=3}^m\alpha_iy^{(i)} \end{aligned} i=1mαiy(i)α1y1+α2y2=0=i=3mαiy(i)

由于 α 3 \alpha_3 α3 α 4 \alpha_4 α4、…、 α m \alpha_m αm都是已知固定值,因此为了方便将等式右边,可将等式右边标记成 ζ \zeta ζ

α 1 y ( 1 ) + α 2 ( 2 ) = ζ \alpha_1y^{(1)}+\alpha_2^{(2)}=\zeta α1y(1)+α2(2)=ζ

还有一个约束条件:

C ≥ α i ≥ 0 , i = 1 , 2 , . . . , m C \geq \alpha_i \geq 0,i=1,2,...,m Cαi0,i=1,2,...,m

这个约束条件被称作为“方形约束”,如果将 α 1 \alpha_1 α1 α 2 \alpha_2 α2画出来:

那么 α 1 \alpha_1 α1 α 2 \alpha_2 α2表示的值应该都在 [ 0 , C ] [0,C] [0,C]之间,也就是在方框里面,这意味着:

α = ζ − α 2 y ( 2 ) y ( 1 ) \alpha=\frac{\zeta-\alpha_2y^{(2)}}{y^{(1)}} α=y(1)ζα2y(2)

然后带入到需要求解的式子中:

W ( α 1 , α 2 , . . . , α m ) = W ( ζ − α 2 y ( 2 ) y ( 1 ) , α 2 , . . . , α m ) W(\alpha_1,\alpha_2,...,\alpha_m)=W(\frac{\zeta-\alpha_2y^{(2)}}{y^{(1)}},\alpha_2,...,\alpha_m) W(α1,α2,...,αm)=W(y(1)ζα2y(2),α2,...,αm)

在前面我们认为 α 3 \alpha_3 α3 α 4 \alpha_4 α4、…、 α m \alpha_m αm都是已知固定值,只有 α 1 \alpha_1 α1 α 2 \alpha_2 α2是未知需要求解的。那么把 W ( ζ − α 2 y ( 2 ) y ( 1 ) , α 2 , . . . , α m ) W(\frac{\zeta-\alpha_2y^{(2)}}{y^{(1)}},\alpha_2,...,\alpha_m) W(y(1)ζα2y(2),α2,...,αm)展开后可以表示成 a α 2 2 + b α 2 + c a\alpha_2^2+b\alpha_2+c aα22+bα2+c的形式,其中 a a a b b b c c c是由 α 3 \alpha_3 α3 α 4 \alpha_4 α4、…、 α m \alpha_m αm表示出来,即 W W W是一个二次函数。而其实对于所有的 α \alpha α,如果保持其他参数都固定的话,都可以表示成 W W W关于某个 α \alpha α的一元二次函数:

W ( α 1 , α 2 , . . . , α m ) = W ( ζ − α 2 y ( 2 ) y ( 1 ) , α 2 , . . . , α m ) = a α 2 2 + b α 2 + c \begin{aligned} W(\alpha_1,\alpha_2,...,\alpha_m)&=W(\frac{\zeta-\alpha_2y^{(2)}}{y^{(1)}},\alpha_2,...,\alpha_m) \\ &=a\alpha_2^2+b\alpha_2+c \end{aligned} W(α1,α2,...,αm)=W(y(1)ζα2y(2),α2,...,αm)=aα22+bα2+c

由于上面式子是一个标准的一元二次函数,所以很容易求解出最优值,从而可以得到 α 2 \alpha_2 α2的最优值,而这个最优值一定会在上图中 α 1 − α 2 = ζ \alpha_1-\alpha_2=\zeta α1α2=ζ这条线上,且在“方形约束”中。按照这种方式解除 α 2 \alpha_2 α2后,之后根据 α 1 \alpha_1 α1 α 2 \alpha_2 α2的关系求解出 α 1 \alpha_1 α1,这样子就求解出了相对于 α 1 \alpha_1 α1 α 2 \alpha_2 α2关于 W W W,且满足所有约束条件的最优值,该算法的关键是对一个一元二次函数求最优解,这个求解非常简单,这就使得SMO算法的内嵌计算非常高效。

如何求解 α 2 \alpha_2 α2的值呢?只需要对式子进行求导 a α 2 2 + b α 2 + c a\alpha_2^2+b\alpha_2+c aα22+bα2+c,即对 W W W进行求导,然而要保证 α 2 \alpha_2 α2即在方形约束内,也在 α 1 − α 2 = ζ \alpha_1-\alpha_2=\zeta α1α2=ζ这条线上,那么就要保证 H ≥ α 2 ≥ L H \geq \alpha_2 \geq L Hα2L,这里使用 α 2 n e w , u n c l i p p e d \alpha_2^{new,unclipped} α2new,unclipped来表示求导出来的 α 2 \alpha_2 α2,然后最后 α 2 n e w \alpha_2^new α2new的迭代更新方式如下所示:

α 2 n e w = { H , if  α 2 n e w , u n c l i p p e d > H α 2 n e w , u n c l i p p e d , if  H ≥ α 2 n e w , u n c l i p p e d ≥ L L , if  α 2 n e w , u n c l i p p e d < L \alpha_2^new=\begin{cases} H, & \text {if $\alpha_2^{new,unclipped}>H$} \\ \alpha_2^{new,unclipped}, & \text{if $H \geq \alpha_2^{new,unclipped} \geq L$} \\ L, & \text{if $\alpha_2^{new,unclipped} < L$} \end{cases} α2new=H,α2new,unclipped,L,if α2new,unclipped>Hif Hα2new,unclippedLif α2new,unclipped<L

得到 α 2 \alpha_2 α2后,由此可以返回求解 α 1 \alpha_1 α1得到新值 α 1 \alpha_1 α1,这里就是SMO优化算法的核心思想。根据SMO优化算法的核心思想:

  1. 首先选择两个要改变的 α \alpha α α i \alpha_i αi α j \alpha_j αj
  2. 其次保持除了 α i \alpha_i αi α j \alpha_j αj之外的所有参数固定
  3. 最后同时相对于这两个参数使 ω \omega ω取最优,且同时满足所有约束条件

可以求解出所有的 α \alpha α,使得 W W W取得最大值,即原问题将得到解决:

m a x α W ( α ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y ( i ) y ( j ) < x ( i ) , x ( j ) > max_{\alpha}W(\alpha)=\sum_{i=1}^m\alpha_i-\frac{1}{2}\sum^m_{i=1,j=1}\alpha_i\alpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> maxαW(α)=i=1mαi21i=1,j=1mαiαjy(i)y(j)<x(i),x(j)>

C ≥ α i ≥ 0 , i = 1 , 2 , . . . , m C \geq \alpha_i \geq 0,i=1,2,...,m Cαi0,i=1,2,...,m

∑ i = 1 m α i y ( i ) = 0 \sum_{i=1}^m\alpha_iy^{(i)}=0 i=1mαiy(i)=0

总结

svm的步骤总结如下:

  1. 先确定间隔器,这里svm一般默认是几何间隔
  2. 由间隔器确定间隔函数
  3. 从间隔函数查看是否包含不等式约束形式
  4. 根据拉格朗日对偶步骤计算得到参数w、b
  5. 规则化不可分的参数,即在原对偶式子中加入离群点权重 C C C,问题转换为 m a x α W ( α ) max_{\alpha}W(\alpha) maxαW(α)
  6. 利用SMO优化算法求解 W ( α ) W(\alpha) W(α)最优值,首先选择两个要改变的 α \alpha α α i \alpha_i αi α j \alpha_j αj
  7. 其次保持除了 α i \alpha_i αi α j \alpha_j αj之外的所有参数固定
  8. 最后同时相对于这两个参数使 ω \omega ω取最优,且同时满足所有约束条件,最后确定选取的这两个 α i \alpha_i αi α j \alpha_j αj的值
  9. 重复步骤6-9直到所有参数 α \alpha α求解完成

svm在神经网络出来之前一直是最优的算法。相比于之前的算法推导复杂一些,但是逻辑并不难,它不想逻辑回归那样去拟合样本点,而是根据几何空间去寻找最优的分割超平面,为了判断哪个超平面最好,引入几个平面间隔最大化目标,从而求解出结果。

实例

有一份数据svm_data1,加载读取:

import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
from sklearn import svm

# 加载data1
raw_data = loadmat('./svm_data1.mat')
# print(raw_data)

# 读取data1的数据
data = pd.DataFrame(raw_data['X'], columns=['X1', 'X2'])
data['y'] = raw_data['y']

positive = data[data['y'].isin([1])]
negative = data[data['y'].isin([0])]
print(positive.shape)
print(negative.shape)

# 查看data1的数据分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()

数据分布如下所示:

可以看到数据分在两边很好区分,用一般的分类器例如逻辑回归、朴素贝叶斯即可区分,这里就用svm的线性核进行分类,设置离群点的权重 C = 1 C=1 C=1,即不区分离群点:

svc = svm.LinearSVC(C=1, loss='hinge', max_iter=1000)

svc.fit(data[['X1', 'X2']], data['y'])
data1_score_1 = svc.score(data[['X1', 'X2']], data['y'])
print(data1_score_1)

得到的准确率为0.980392156863,分类的图如下:

可以看到左上角有一个点原来是正样本,但是被分类为蓝色(负样本),所以正样本21个,负样本30个,被误分的概率刚好是 1 51 = ‭ 0.01960784313 ‬ \frac{1}{51}=‭0.01960784313‬ 511=0.01960784313,所以准确率是 1 − ‭ 0.01960784313 ‬ = 0.980392156863 1-‭0.01960784313‬=0.980392156863 10.01960784313=0.980392156863,刚好对的上。现在这里设置离群点的权重 C = 100 C=100 C=100用以区分离群点,得到的准确率为1.0,分类图像为:

再看第二份数据分布图如下:

这次就不能用线性核分类,需要用到RBF核分类:

# 做svm分类,使用RBF核
svc = svm.SVC(C=100, gamma=10, probability=True)
svc.fit(data[['X1', 'X2']], data['y'])
data['Probability'] = svc.predict_proba(data[['X1', 'X2']])[:, 0]

分类的结果图如下所示:

结果得到的准确率只有0.769228287521,因此设置了网格调参:

# 简单的网格调参
C_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
gamma_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]

best_score = 0
best_params = {'C': None, 'gamma': None}

# 网格调参开始
for C in C_values:
    for gamma in gamma_values:

        # 做svm分类,使用RBF核
        svc = svm.SVC(C=C, gamma=gamma, probability=True)
        svc.fit(data[['X1', 'X2']], data['y'])

        # 交叉验证
        data2_score = cross_validation.cross_val_score(svc, data[['X1', 'X2']], data['y'], scoring='accuracy', cv=3)
        print(data2_score.mean())

最后准确率提高到0.858437379017,调整到的最优参数为{'C': 10, 'gamma': 100}

数据和代码下载请关注公众号【 机器学习和大数据挖掘 】,后台回复【 机器学习 】即可获取

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值