题目
1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + ⋯ + 1 + 1 202 0 2 + 1 202 1 2 \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \cdots+ \sqrt{1 + \frac{1}{2020^2} + \frac{1}{2021^2}} 1+121+221+1+221+321+1+321+421+⋯+1+202021+202121
抽象一下:
f ( n ) = 1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + ⋯ + 1 + 1 n 2 + 1 ( n + 1 ) 2 ( n 为 正 整 数 ) f(n) = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \cdots + \sqrt{1 + \frac{1}{n^2} + \frac{1}{(n+1)^2}} \space \space (n 为正整数) f(n)=1+121+221+1+