一个简单的奥数题,用编程找到灵感

这篇博客探讨了一个奥数问题,通过编程方法寻找序列1+121+221+...+n21+(n+1)21的规律。作者使用递归函数分析,得出每个项的关系,并通过代码验证得到了n+1−n+11的简洁结果。数学推导证实了编程得出的结论,揭示了序列中隐藏的算术规律。
摘要由CSDN通过智能技术生成
欢迎关注,敬请点赞!

题目

1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + ⋯ + 1 + 1 202 0 2 + 1 202 1 2 \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \cdots+ \sqrt{1 + \frac{1}{2020^2} + \frac{1}{2021^2}} 1+121+221 +1+221+321 +1+321+421 ++1+202021+202121

抽象一下:
f ( n ) = 1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + ⋯ + 1 + 1 n 2 + 1 ( n + 1 ) 2    ( n 为 正 整 数 ) f(n) = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \cdots + \sqrt{1 + \frac{1}{n^2} + \frac{1}{(n+1)^2}} \space \space (n 为正整数) f(n)=1+121+221 +1+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值