图像处理基础

计算机视觉

CV:computer vision
广义上,和图片相关的技术的总称
包括:
图像的采集、压缩编码、存储、传输
图像的合成、三维重建、图像增强、图像修复
图像的分类、识别、目标检测、特征提取等等

应用领域

公安系统:人脸识别,指纹识别,场景监控
医学领域:CT图像分析
文本处理:文字识别
智能交通:电子警察抓拍系统,无人驾驶

人工智能,在CV中应用最成功的方向是图像识别,让机器理解图像中的内容,如内容识别,人脸检测

图像处理基础

图像数字化:将一幅图转换为计算机可以处理的数字形式
包括以下两个过程:

采样

空间中连续的图像(模拟信号),变成离散的点(数字信号)
经过采样的图像,宽/高方向各有一定数量的数据点
每个方向,单位尺寸的采样点数,称为分辨率
如640*480分辨率的图像,表示宽有640个采样点,高有480个点
下图为分辨率由高到底的一种采样过程,图像质量越来越差
在这里插入图片描述

量化

连续值 近似为有限的离散值

灰度级

图像每个采样点可分辨的 最小变化,通常是2的幂次
灰度级越高,视觉效果就越好
计算机中最常用的是8位图像,灰度级 2 8 = 256 2^8 = 256 28=256,即灰度级有256个级别,从最暗0到最亮255

以下为灰度级从高到低的视觉效果。
在这里插入图片描述
单通道的数字图像–>灰度图,在计算机中表示为一个数据矩阵,每个采样点记录了灰度级
在这里插入图片描述
多通道数字图像–>彩色图像
常用RGB颜色空间:每个像素点有三个维度(R,G,B)
每个值分别表示红绿蓝三原色的亮度,如红色(255,0,0)
在这里插入图片描述
另一种HSV(色相,饱和度,亮度)颜色空间
H色相,颜色的相位角,0-360
S饱和度,0-1 \frac {所选颜色的纯度} {该色的最大纯度} 比率
V亮度,0-1
在这里插入图片描述
其他的色彩空间:
YUV
CMYK
Lab

色彩空间变换:
不同的色彩空间通过计算公式,相互转换,通常图像处理的库会提供相应的API

常用的图像处理技术

色彩处理

  1. 灰度化,将彩色图---->灰度图
  2. 二值化/反二值化,将灰度图像素,通过一个阈值----->转为只有两种颜色的图像,非黑即白
  3. 色彩提取,提取指定的颜色
  4. 直方图均衡化,调节图像的统计直方图分布
  5. 亮度、饱和度、色调 调整

图像的形态变换

  1. 仿射变换,旋转,平移
  2. 缩放、裁剪
  3. 图像相加、相减 如水印
  4. 透视变换
  5. 图像的腐蚀、膨胀、形态学梯度

色彩梯度

  1. 模糊,缩小像素间的差异
  2. 锐化,增大像素间的差异
  3. 边沿检测,色彩变化最快的地方

轮廓处理

闭合的线条,为轮廓

  1. 轮廓的查找、绘制
  2. 绘制矩形、圆形
  3. 多边形拟合

非闭合的线条,为边缘

色彩变换

灰度化

将彩色图形—>灰度图像,即灰度化(R值=G值=B值,每个通道为具体的灰度级0-255)

  1. 分量法,将R/G/B其中一个的分量值作为统一的灰度值
  2. 最大值法,将R/G/B中最大的一个作为统一的灰度值
  3. 平均法,xxx
  4. 加权平均,xxx ,效果最好

二值化

灰度图—像素点的灰度值与阈值比较,大于阈值则改为255,小于等于阈值,则改为0。

反二值化,大于阈值改为0…

直方图均衡化

统计每一个通道灰度值的直方图分布。
在这里插入图片描述
直方图均衡化,就是对原始图片的直方图,进行调整,使像素点的灰度值分布更加的均衡,增加图片的整体对比度。如下:
在这里插入图片描述

 
 
 
 
下一篇:使用opencv处理图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

laufing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值