计算机视觉
CV:computer vision
广义上,和图片相关的技术的总称
包括:
图像的采集、压缩编码、存储、传输
图像的合成、三维重建、图像增强、图像修复
图像的分类、识别、目标检测、特征提取等等
应用领域
公安系统:人脸识别,指纹识别,场景监控
医学领域:CT图像分析
文本处理:文字识别
智能交通:电子警察抓拍系统,无人驾驶
人工智能,在CV中应用最成功的方向是图像识别,让机器理解图像中的内容,如内容识别,人脸检测
图像处理基础
图像数字化:将一幅图转换为计算机可以处理的数字形式
包括以下两个过程:
采样
空间中连续的图像(模拟信号),变成离散的点(数字信号)
经过采样的图像,宽/高方向各有一定数量的数据点
每个方向,单位尺寸的采样点数,称为分辨率
如640*480分辨率的图像,表示宽有640个采样点,高有480个点
下图为分辨率由高到底的一种采样过程,图像质量越来越差
量化
连续值 近似为有限的离散值
灰度级
图像每个采样点可分辨的 最小变化,通常是2的幂次
灰度级越高,视觉效果就越好
计算机中最常用的是8位图像,灰度级
2
8
=
256
2^8 = 256
28=256,即灰度级有256个级别,从最暗0到最亮255
以下为灰度级从高到低的视觉效果。
单通道的数字图像–>灰度图,在计算机中表示为一个数据矩阵,每个采样点记录了灰度级
多通道数字图像–>彩色图像
常用RGB颜色空间:每个像素点有三个维度(R,G,B)
每个值分别表示红绿蓝三原色的亮度,如红色(255,0,0)
另一种HSV(色相,饱和度,亮度)颜色空间
H色相,颜色的相位角,0-360
S饱和度,0-1 \frac {所选颜色的纯度} {该色的最大纯度} 比率
V亮度,0-1
其他的色彩空间:
YUV
CMYK
Lab
色彩空间变换:
不同的色彩空间通过计算公式,相互转换,通常图像处理的库会提供相应的API
常用的图像处理技术
色彩处理
- 灰度化,将彩色图---->灰度图
- 二值化/反二值化,将灰度图像素,通过一个阈值----->转为只有两种颜色的图像,非黑即白
- 色彩提取,提取指定的颜色
- 直方图均衡化,调节图像的统计直方图分布
- 亮度、饱和度、色调 调整
图像的形态变换
- 仿射变换,旋转,平移
- 缩放、裁剪
- 图像相加、相减 如水印
- 透视变换
- 图像的腐蚀、膨胀、形态学梯度
色彩梯度
- 模糊,缩小像素间的差异
- 锐化,增大像素间的差异
- 边沿检测,色彩变化最快的地方
轮廓处理
闭合的线条,为轮廓
- 轮廓的查找、绘制
- 绘制矩形、圆形
- 多边形拟合
非闭合的线条,为边缘
色彩变换
灰度化
将彩色图形—>灰度图像,即灰度化(R值=G值=B值,每个通道为具体的灰度级0-255)
- 分量法,将R/G/B其中一个的分量值作为统一的灰度值
- 最大值法,将R/G/B中最大的一个作为统一的灰度值
- 平均法,xxx
- 加权平均,xxx ,效果最好
二值化
灰度图—像素点的灰度值与阈值比较,大于阈值则改为255,小于等于阈值,则改为0。
反二值化,大于阈值改为0…
直方图均衡化
统计每一个通道灰度值的直方图分布。
直方图均衡化,就是对原始图片的直方图,进行调整,使像素点的灰度值分布更加的均衡,增加图片的整体对比度。如下: