优化算法
努力学习,努力爱你!
这个作者很懒,什么都没留下…
展开
-
阻塞车间调度
n 作业总数m 分布式工厂机器的数量F 工厂的数量j 作业索引,𝑗 ∈ {1,2,⋯,𝑛}k 作业在机器流程中的位置,𝑘 ∈ {1,2,⋯,𝑛}i 机器索引,𝑖 ∈ {1,2,⋯,𝑚}f 工厂索引,𝑓 ∈ {1,2,⋯,𝐹}v 速度指数,𝑣 ∈ {1,2,⋯,𝑠}。𝑉v第v个流程的速度J 要处理的 𝑛 个作业集合M m个机器的集合V 速度v的集合oj,i作业 𝑗 在机器 𝑖 上的操作tj,i作业 𝑗 在机器 𝑖 上的操作的实际处理时间pj,i。原创 2022-11-22 21:12:48 · 428 阅读 · 0 评论 -
platemo记录
然后调用其判断算法是否执行结束 判断依据是 评价次数是否到达最大评价次数(评价次数指的是种群大小*迭代次数)SOLUTION(Parent.dec);每调用一次该方法评价次数消耗一次。然后调用Problem.Initialization();如有问题,欢迎指正!原创 2022-11-15 16:47:37 · 243 阅读 · 0 评论 -
高维MOEA、偏好MOEA、动态多目标
许多问题除了有很多属性,而且和时间相关,随着时间的变化,问题本身也在变化,这类问题称为动态多目标优化。如有问题,欢迎指正!原创 2022-10-12 21:29:11 · 161 阅读 · 0 评论 -
多目标进化算法
如有问题,欢迎指正!原创 2022-10-12 21:07:45 · 380 阅读 · 0 评论 -
多目标进化群体的多样性
如有问题,欢迎指正!原创 2022-10-12 20:35:16 · 256 阅读 · 0 评论 -
擂台赛法则构造非支配集
个人理解 就是将x个体与其中所有的个体进行作比较,如果x支配y,删除y如果y支配x则让y作为擂主重新开始比较否则将x并入非支配集。如有问题,欢迎指正!原创 2022-10-12 10:56:40 · 203 阅读 · 0 评论 -
基于聚类的MODA
个人理解将父代和子代混合在一起,然后构造出一个DNSet 如果NDSet小于子代个数,就会随机产生差值个个体 如果大于就是降低其大小。如有问题,欢迎指正!原创 2022-10-12 10:27:15 · 119 阅读 · 0 评论 -
庄家法则构造Pareto最优解集
个人理解 将个体从构造集中删除,然后拿该个体与其他个体比较,首先将该个体支配的所有个体删除,然后在剩余个体中判断有无支配该个体的,如果有则不并入非支配集,否则并入。个人理解 非支配个体就是在决策空间或者目标函数中,该个体不支配任何个体。如有问题,欢迎指正!原创 2022-10-12 10:12:42 · 142 阅读 · 0 评论 -
构造Pareto最优解的简单方法
进化过程中每个个体X依次与非支配集NDSet中的个体Y比较如果X支配Y,将Y从NDSet中删除。如果X不被NDSet中的任何一个个体所支配,则将X并入NDSet中。假设有一组进化集群P,同时还有一个解集p。中存在一个个体支配p,则删除p。中解被p支配则删除p。如有问题,欢迎指正!原创 2022-10-11 19:32:09 · 376 阅读 · 0 评论 -
多目标进化算法 基础
个人理解图2.2 由于x*是固定的,随着X的变化 f1 f2均在变化 从图2.2中可以看出细直线上随着x的变化f1逐渐变大 f2保持不变满足弱非支配关系条件 在粗直线上随着x的变化 f1逐渐变大 f2逐渐变小满足强非支配关系。为了体现适者生存的原则,通常用适应度来表示其优劣,适应度越高,生存能力越强。必须建立适应度函数与目标函数的映射,并且目标优化的方向应向适应度增大的方向进行。个人理解 支配关系就是被支配的解的目标值小于等于支配解的目标值,且至少存在一个目标的被支配解的目标值小于支配解的目标值。原创 2022-10-11 14:14:56 · 914 阅读 · 3 评论 -
粒子群算法 PSO
粒子群算法(PSO),在PSO中,每个优化问题的潜在解都是搜索空间的一只鸟,被称为粒子,所有的粒子都有一个由适应度函数决定的适值,每个粒子还有一个速度决定它们“”飞行“”的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索,整个过程大致为,PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代的过程中,粒子通过跟踪两个极值来更新自己:第一个就是粒子本身所找到的最优解,这个解称为个体极值;个粒子的最优位置个体最优记为。根据以下公式更新位置和速度。为该粒子当前最优位置,原创 2022-10-06 11:45:03 · 526 阅读 · 1 评论 -
遗传算法 GA
遗传算法中的变异运算是指将个体染色体编码串中的某些基因座上的基因值用该基因座的其他等位基因来替换,从而形成一个新的个体。通过选择算子模拟“优胜劣汰”,适应度高的个体被遗传到下一代的概率较大,适应度低的算子被遗传到下一代的概率较小。二进制编码的字符串长度与问题所求解的精度有关。表示群体中第i个染色体的适应度值,则它产生后代的能力刚好为其适应度值所占的份额。适应度函数要有效反映每一个染色体与问题的最优解染色体之间的差距。在交叉之前需要将群体中的个体进行配对,一般采取随机配对原则。表示群体的适应度函数值的总和,原创 2022-10-05 20:56:02 · 836 阅读 · 0 评论 -
模拟退火算法
所谓爬山算法就是先随机找个一个点,然后计算其y值,然后随机给一个领域 在其左右邻域找到一个点 再次计算其y值,然后进行比较,找到最大的 循环下去即可。但是可能会出现局部最优解比如在上图中如果领域较小则会出现最优解在(0,7)附近。在其基础上出现了模拟退火算法。为了解决局部最优解,当领域中选择的值求出的y小于原y时,增加一个概率判断是否选择其为一个解 再去迭代它。概率的选择有很多形式我们采用玻尔兹曼常数退火算法。其最终目的是选取最大值。如有问题,欢迎指正!原创 2022-10-05 19:14:15 · 482 阅读 · 0 评论