传递函数的四个基本要素之积分要素和比例要素

  • 一阶滞后环节
  • 二阶滞后环节
  • 积分要素
  • 比例要素

💗1.什么是积分要素

当输入输出关系可以用以下的一阶线性微分方程表示时,我们称之为积分元件。
y ˙ ( t ) = b 0 u ( t ) \dot{y}(t) = b_0 u(t) y˙(t)=b0u(t)

对其进行拉普拉斯变换后,可以得到如下表达式:
Y ( s ) = b 0 s ⏟ G ( s ) U ( s ) Y(s) = \underbrace{\frac{b_0}{s}}_{G(s)} U(s) Y(s)=G(s) sb0U(s)

这里的关键点在于传递函数中包含了一个表示积分的 1 / s 1/s 1/s(积分器)。

微分方程的解可以在不进行拉普拉斯变换的情况下,通过输入的积分直接获得(这里假设 y 的初始值为 0):
y ( t ) = b 0 ∫ 0 t u ( τ ) d τ y(t) = {b_0} \int _0 ^t u(\tau) d\tau y(t)=b00tu(τ)dτ

因此,可以将积分元件想象成“时刻记录并累积所给定输入的过程”。

接下来,我们将介绍由积分元件表示的系统示例及其传递函数。

## 💓无阻尼平移运动系统的传递函数

在这里插入图片描述

输入是作用在台车上的力 f ( t ) f(t) f(t),输出是台车的速度 v ( t ) v(t) v(t) m m m是台车的质量。这是一个在一阶系统中考虑、没有空气阻力的情况下的例子。求这个台车的运动方程,可以得到以下表达式。
m v ˙ ( t ) = f ( t ) m\dot{v}(t) = f(t) mv˙(t)=f(t)
对上述方程进行拉普拉斯变换并整理关于输出的表达式,就可以得到传递函数。
KaTeX parse error: No such environment: gather at position 8: \begin{̲g̲a̲t̲h̲e̲r̲}̲msV(s) = F(s) \…

可以理解为,所施加的力作为运动能量随着时间不断累积,从而逐渐形成速度。

💗2.什么是比例要素

输入输出关系可以用下式表示的,被称为比例元件。
y ( t ) = K u ( t ) y(t) = K u(t) y(t)=Ku(t)

即使进行拉普拉斯变换,比例关系仍然成立。
Y ( s ) = K ⏟ G ( s ) U ( s ) Y(s) = \underbrace{K}_{G(s)} U(s) Y(s)=G(s) KU(s)

因为这只是一个代数方程而非微分方程,所以比例元件是一个静态系统。

💓例子:弹簧的传递函数

在这里插入图片描述

输入是弹簧的伸长 x ( t ) x(t) x(t) ,输出是力 f ( t ) f(t) f(t), k 是弹簧常数。这些关系由胡克定律表示。
f ( t ) = k x ( t ) f(t)=kx(t) f(t)=kx(t)
即使进行拉普拉斯变换,比例关系仍然成立。
F ( s ) = K ⏟ G ( s ) X ( s ) F(s) = \underbrace{K}_{G(s)} X(s) F(s)=G(s) KX(s)

💗更复杂的系统

到目前为止,我们介绍的是传递函数基础中非常简单的系统。对于更加复杂的系统(即微分方程阶数为三阶或以上的系统),这些被称为高阶系统。

尽管高阶系统确实复杂,但已知的是,它们的大部分传递函数可以通过一阶滞后元件、二阶滞后元件、积分元件和比例元件的组合来表示。

因此,只要理解了这里介绍的各种基本元件,就可以将这些概念直接扩展应用到高阶系统中。可以说,掌握了基本系统也就掌握了高阶系统!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值