独热编码
一、为什么要独热编码?
独热编码(是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到原点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。
为什么特征向量要映射到欧式空间?
将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。
二、独热编码的优缺点
优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
缺点:当类别的数量很多时,特征空间会变得非常大,成为一个高维稀疏矩阵。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。
三、什么情况下(不)用独热编码?
用:独热编码用来解决类别型数据的离散值问题,
不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。 Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。
总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。
OneHotEncoder()内部参数
OneHotEncoder(n_values=’auto’, categorical_features=’all’, dtype=<class ‘numpy.float64’>, sparse=True, handle_unknown=’error’)
n_values=’auto’,表示每个特征使用几维的数值由数据集自动推断,即几种类别就使用几位来表示。
categorical_features = ‘all’,这个参数指定了对哪些特征进行编码,默认对所有类别都进行编码。
sparse=True 表示编码的格式,默认为 True,即为稀疏的格式,指定 False 则就不用 toarray() 了
handle_unknown=’error’,其值可以指定为 “error” 或者 “ignore”,即如果碰到未知的类别,是返回一个错误还是忽略它。
举例:
import pandas as pd
a = pd.DataFrame([[1,2,3],
[4,5,6],
[10,8,9]],columns = ["feature_1", "feature_2", "label"])
from sklearn.preprocessing import OneHotEncoder
#sparse表示编码的格式,默认为 True,即为稀疏的格式,指定 False 则就不用 toarray() 了
#handle_unknown其值可以指定为 "error" 或者 "ignore",即如果碰到未知的类别,是返回一个错误还是忽略它。
hotCoder=OneHotEncoder(sparse = False, handle_unknown = "ignore")
hot = hotCoder.fit_transform(a)
print(hot)
print(pd.DataFrame(hot))
结果展示
[[1. 0. 0. 1. 0. 0. 1. 0. 0.]
[0. 1. 0. 0. 1. 0. 0. 1. 0.]
[0. 0. 1. 0. 0. 1. 0. 0. 1.]]
0 1 2 3 4 5 6 7 8
0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0
1 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
2 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0