G1D7-云计算与虚拟化技术&pagerank算法&作图&GNN@LAB0&Intriguing properties of neural networks&算法&美亚2021个人赛&ATP论文@TT

一、虚拟化技术与云计算

上数据挖掘课,觉得好玩,查一查
https://www.zhihu.com/question/22793847

二、pagerank算法

在做gnn的lab,复习一下~看一下alpha是什么。
参考:
https://www.cnblogs.com/LittleHann/p/9969955.html

https://zhuanlan.zhihu.com/p/133233438

CS224w slides

三、作图

emm又是maplotlib
1、plt.xticks用法
这里面的例子还不错~tick是坐标大小,但是不是坐标label
在这里插入图片描述
在这里插入图片描述

https://www.pythonpool.com/matplotlib-xticks/
给刻度,和名称
直接给刻度,不给名称
plt.xticks( [] ):不显示横坐标
在这里插入图片描述
https://blog.csdn.net/weixin_48419914/article/details/121672210

2、plt.xlabel用法
在这里插入图片描述

      plt.xlabel((f'Epoch: {epoch}, Loss:{loss.item():.4f}\n'
          f'Trainig Accuracy:{accuracy['train']*100:.2f}% \n'
          f'Validation Accuracy: {accuracy['val']*100:.2f}%'
      ),fontsize=16)

看了下图,这里就是单纯的三行label

四、GNN@LAB0

1、tensor detach的原因及用法
h = h.detach().cpu().numpy()

detach()后,生成新变量脱离计算图,此变量没有梯度,但和原变量共享数据。
如果改变新的变量new,再计算old的梯度,会报错。

又看到了一个detach_(),其实就是在本身进行操作,将自身的梯度grad_fn设为None,这样就不会和前一个点关联,也就不会计算梯度(requires_grad=False),m变为叶子节点

detach()生成新的;detach_()把原来的点从计算图取下来。
参考:https://blog.csdn.net/qq_27825451/article/details/95498211

2、plt.scatter用法
在这里插入图片描述
3、pytorch中的维度
第一维度是batch
h[:,0],为一个batch所有样本的第一维属性

4、item()的用法
loss.item()===》将零维张量变为浮点数

5、nx.spring_layer
Returns:
posdict
A dictionary of positions keyed by node

—今天完成了一部分的lab,打算明天完成lab0。明天需要主要跟进的任务是搞清h到底是什么~~
下午打算先看一下intriguing properties。再完成美亚两年的个人赛

五、Intriguing properties of neural networks

先把昨天的问题copy过来~争取今天解决

1、(1)有什么现实价值——完了之后呢?(2)具体所有unit的实验结果是如何的?可以选出的图片具有哪些特征?
2、在模型之间迁移,说的是模型结构不同的时候,x+r仍旧有效吗

1、(2)
原以为:每一个unit代表了一个feature(nn把factors disentangle)
但现在:发现用不同unit进行混合,也可以代表一个与一个unit相似的feature
So:nn也许并没有disentangle factors到每一个unit,而是将特征们拆解到某一层。
只看图:效果相同,还是横着或者竖着的特征。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
2、
(1)首先复习一下计算r的公式
在这里插入图片描述

在这里插入图片描述
(2)实验概览
在这里插入图片描述
回答问题2:cross model指的是不同的超参数(层数、正则化或者初始化)对应实验如下,无论如何,都比高斯分布强。
在这里插入图片描述

【问题:明天解决】
1、可是对single unit进行激活,也表示有语义呀。
2、原先认为一个单元代表一个特征,那就是一个数可以代表一个特征吗?后来认为是整个空间代表了很多语义特征的集合体?用词向量【 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013】作为支撑?
在这里插入图片描述
3、这个发现有什么价值?
4、如何提升resulting models?
在这里插入图片描述

六、算法

为什么书上的比某神讲的困难这么多呐~看完二分打算放弃了。快看看美亚个人赛叭!

七、美亚2021个人赛

做了20题:分析文件找不到,就去原文件地址去翻翻!!
注意整体思路,查找对应检材

八、ATP论文@TTPDrill

【问题】
在这里插入图片描述
在这里插入图片描述

啊啊啊 10点啦洗漱然后写总结就睡了!!!学习太爽了!!开心!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值