人工智能入门——机器学习小案例(一)

1、对于人工智能的一些概念

  1. 什么是人工智能
    人工智能就其本质而言,是机器对人的滋味信息过程的模拟,让它能像人一样去思考,一般会有信息的输入,对信息进行处理,再对信息进行输出。人工智能根据输入信息进行模型结构、权重更新,实现最终优化。其特点是信息处理、自我学习、优化升级
  2. 人工智能和机器学习、深度学习的关系
    机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。机器学习是使用算法来解析数据,从中学习,对世界中的事件做出决策和预测,如房价、电影推荐。而深度学习是模仿人类的神经网络,建立模型,进行数据分析。比如人脸识别、语义理解以及无人驾驶
  3. 机器学习的主要类别
    监督式学习:基于数据以及结果进行预测,其特点是一组输入数据对应一个“正确的”输出结果
    非监督式学习:从数据中挖掘出关联性,不存在“正确的”答案
    强化学习
  4. 机器学习的基本原理
    监督式学习的核心步骤:
    1、使用标签数据训练机器学习模型
    标签数据:由输入数据对应的正确的输出结果
    机器学习模型:将学习输入数据与输出数据结果之间的函数关系
    2、调用训练好的机器学习模型,根据新的输入数据预测对应的结果
    图片引用慕课网课程

2、机器学习小案例开发环境部署

  1. 安装python
    python官方网站
  2. 安装Anaconda
    Anaconda官方网站
  3. 新建开发环境、安装numpy、scikit-learn库
    1、在anaconda的Environments中新建一个环境,也可以使用命令进行创建(点击小三角运行标志进入控制台后输入命令)
    命令:
    ① conda create -n 新建环境名
    例:conda create -n MOBbbb
    ② conda activate 新建环境名(需和上一条的环境名一致)
    例:conda activate MOBbbb
    在这里插入图片描述
    2、下载Jupyter
    注:下载好后是Launch,未下载是Install
    在这里插入图片描述
    3、安装Numpy:
    在新建的环境的控制台进行该指令:
    conda install numpy
    4、安装Scikit-learn库:
    在新建的环境的控制台进行该指令:
    conda install scikit-learn
  4. Jupyter notebook界面优化(可有可无)
    界面优化的git地址
    下载指令:
    在这里插入图片描述
    界面设置:jt -t oceans16 -f fira -fs 17 -crellw 90% -ofs 14 -dfs 14 -T
    注:以上每个字符的意思在界面优化git网址中有详细介绍

当重新打开Jupyter后新建python3文件,出现以下情况,并且引入numpy和sklearn没有问题后,环境配置成功
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值