1、对于人工智能的一些概念
- 什么是人工智能
人工智能就其本质而言,是机器对人的滋味信息过程的模拟,让它能像人一样去思考,一般会有信息的输入,对信息进行处理,再对信息进行输出。人工智能根据输入信息进行模型结构、权重更新,实现最终优化。其特点是信息处理、自我学习、优化升级。 - 人工智能和机器学习、深度学习的关系
机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。机器学习是使用算法来解析数据,从中学习,对世界中的事件做出决策和预测,如房价、电影推荐。而深度学习是模仿人类的神经网络,建立模型,进行数据分析。比如人脸识别、语义理解以及无人驾驶 - 机器学习的主要类别
监督式学习:基于数据以及结果进行预测,其特点是一组输入数据对应一个“正确的”输出结果
非监督式学习:从数据中挖掘出关联性,不存在“正确的”答案
强化学习 - 机器学习的基本原理
监督式学习的核心步骤:
1、使用标签数据训练机器学习模型
标签数据:由输入数据对应的正确的输出结果
机器学习模型:将学习输入数据与输出数据结果之间的函数关系
2、调用训练好的机器学习模型,根据新的输入数据预测对应的结果
2、机器学习小案例开发环境部署
- 安装python
python官方网站 - 安装Anaconda
Anaconda官方网站 - 新建开发环境、安装numpy、scikit-learn库
1、在anaconda的Environments中新建一个环境,也可以使用命令进行创建(点击小三角运行标志进入控制台后输入命令)
命令:
① conda create -n 新建环境名
例:conda create -n MOBbbb
② conda activate 新建环境名(需和上一条的环境名一致)
例:conda activate MOBbbb
2、下载Jupyter
注:下载好后是Launch,未下载是Install
3、安装Numpy:
在新建的环境的控制台进行该指令:
conda install numpy
4、安装Scikit-learn库:
在新建的环境的控制台进行该指令:
conda install scikit-learn - Jupyter notebook界面优化(可有可无)
界面优化的git地址
下载指令:
界面设置:jt -t oceans16 -f fira -fs 17 -crellw 90% -ofs 14 -dfs 14 -T
注:以上每个字符的意思在界面优化git网址中有详细介绍
当重新打开Jupyter后新建python3文件,出现以下情况,并且引入numpy和sklearn没有问题后,环境配置成功