站队(queue)周测二

3 篇文章 0 订阅

站队(第一类斯特林数&DP)

题目

有n个高度分别为1到n的人,从前到后站成一列,高的人会挡住矮的人。现在从前往后可以看到m个人,问一共有几种站法?

格式

输入:一行两个整数n,m∈【1,1000】,如题所述。
输出:一行一个整数,为答案mod 1e9+7的值。
时间限制:1s。空间限制:512MB。

样例

样例输入①:3 2
输出:3
解释:一共有132、231、213,这三种方法可以从前往后只看到2人。

样例输入②:1000 500
输出:761367694
解释:答案很大,但是对1e9+7取过模。

提示:每个人都遮挡了一部分人,把这样一个组看一个环。答案即为第一类斯特林数。

思路

错误思路:min值在最前面,则从后n-1人中随机取m-1人,即组合数C(n-1,m-1);min值在第二个到最后,则从n人中随机取m人,即组合数C(n,m)。
错误原因①:两者相加显然连第一个样例都过不了,然后还试图凑式子C(n-1,m)+C(n-1,m-1)或者C(n-1,m-1)*(m-2)+C(n,m)之类的式子,都可以过样例①,但是样例②都不行。“随机”这个思想本来就是错的,随机选的人中,只要中间有一个比相邻的矮,就看不见;然后花在组合数上的时间(卢卡斯,乘法逆元)就全浪费了。

正确思路:
①emmm…提示居然是对的,当然也是我排列组合太差了没想到新的方法。按照第一类斯特林数的组合学解释,p个不同人围k个相同圆桌而坐,要求各桌非空,其不同方案数为第一类Stirling数S(p,k)。结合题目的提示,每个人都可以挡住后面比TA矮的人,这样一组就相当于一个“圆桌”且各桌非空,所以符合第一类斯特林数的组合学定义。
②斯特林数的递推式:S(p,k)=S(p-1,k-1)+(p-1)*S(p-1,k)。具体推导过程另外讲。
③因为要一步步递推,参考网上UVA10128的题解(题目相似,只不过更难,还要从后往前看,可以看到k个人,再计算方案),然后使用DP(第一次写DP,一脸懵逼)。
错误原因②:开了一个dp[1005] [1005]的二维数组,然后用memset置0,内存爆炸、超时。
改进:用两层for循环置0(或者在main函数外面定义二维数组)。

代码

错误代码①:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cstdlib>
using namespace std;
#define ll long long
const ll p=1e9+7;
ll inv(ll a)
{
    return a==1?1:(ll)(p-p/a)*inv(p%a)%p;
}
ll C(ll n,ll m)
{
    if(m<0) return 0;
    if(n<m) return 0;
    if(m>n-m) m=n-m;
    ll up=1,down=1;
    for(int i=0;i<m;i++)
    {
        up=up*(n-i)%p;
        down=down*(i+1)%p;
    }
    return up*inv(down)%p;
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    ll x=C(n-1,m-1)*(m-2)+C(n,m)%p;
    printf("%lld\n",x);
    return 0;
}

正确代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cstdlib>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
const ll m=1e9+7;
ll dp[1001][1001];
int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    for(int i=1;i<=a;i++)
    {
        for(int j=1;j<=b;j++)
        {
            dp[i][j]=0;//本来用memset置0
        }
    }
    dp[1][1]=1;
    for(int i=2;i<=a;i++)//本来所有的i最大都是1005
    {
        for(int j=1;j<=i;j++)
        {
            dp[i][j]=(dp[i-1][j-1]+(i-1)*dp[i-1][j])%m;//本来这些全都单独拎出来写,当作预处理
        }
    }
    printf("%lld\n",dp[a][b]);
    return 0;
}

斯特林数(补充)

(详情可见百度百科)
问题:p个不同人围k个相同圆桌而坐,要求各桌非空,其不同方案数为第一类Stirling数S(p,k).
概念一:
S(p,p)=1,p>=0;
S(p,0)=0,p>=1;
①1号人单独坐1张桌子,S(p-1,k-1);
②1号人不单独坐1张桌子,先安排其他人2-p号,再把1号放到其他任何号码的左边,这样有 (p-1)*S(p-1,k);
综上:S(p,k)=(p-1,k-1)+(p-1)*S(p-1,k)。
概念二:
排列数A(p,k)表达在p人中选k人有序的组合方式数。
组合数C(p,k)表达在p人中随机选k人的组合方式数。
A(p,k)=C(p,k)·k!=p·(p-1)·(p-2)···(p-k+1)
=S(k,k)·p^k -···+ S(k,0)·1
=((-1)^(k-j))
*S(k,j)·p^k,k是原式的k,j∈【0,k】。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值