3D肝脏分割数据集LiTS17下载及nii文件转PNG

本文分享了LiTS17肝脏肿瘤分割数据集的下载链接,并提供了将3D nii文件转换为2D PNG图片的Python代码,特别针对二分类任务进行了预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        昨日网上找LiTS数据集找了半天,要么失效链接,要么将免费数据集收费出售(确实有点掉价)。费尽周折终于在谷歌网盘上将数据集下载了下来,为了方便学习我将此数据集打包上传到了百度云盘供大家下载。

链接:https://pan.baidu.com/s/10kS0B9gMLUmTlu-C7gZtjA 
提取码:phbp

       数据来源:

前30个nii文件:LiTS17 肝脏肿瘤分割数据集 - 数据集下载 - 超神经 (hyper.ai)

剩余nii文件:LITS17 - Google 云端硬盘 (需科学上网)

        另外,我将nii文件按照z轴切割出来了2D的PNG图片,以供使用。博主新手入门所以想要先拿二分类试试手,所以2D图片中肿瘤以及肝脏均视作了肝脏部分,如果想做肿瘤、肝脏以及其他部分的三分类问题,大家可以自行切分nii文件。另外值得一提的是,segmentation部分无肝脏以及肝脏在图中面积占比小于1.5%的切片并未保留,切割图像也在百度云盘分享的2D文件夹中,切分的python代码如下:

import os
import numpy as np
import nibabel as nib
import imageio
import cv2


def read_niifile(niifilepath):  # 读取niifile文件
    img = nib.load(niifilepath)  # 提取niifile文件
    img_fdata = img.get_fdata(dtype='float32')
    return img_fdata


def save_fig(niifilepath, savepath, num, name):  # 保存为图片
    name = name.split('-')[1]
    filepath_seg = niifilepath + "segmentation\\"  + "segmentation-" + name
    filepath_vol = niifilepath + "volume\\" + "volume-" +name
    savepath_seg = savepath + "segmentation\\"
    savepath_vol = savepath + "volume\\"

    if not os.path.exists(savepath_seg):
        os.makedirs(savepath_seg)
    if not os.path.exists(savepath_vol):
        os.makedirs(savepath_vol)

    fdata_vol = read_niifile(filepath_vol)
    fdata_seg = read_niifile(filepath_seg)
    (x, y, z) = fdata_seg.shape
    total = x * y

    for k in range(z):
        silce_seg = fdata_seg[:, :, k]  # 三个位置表示三个不同角度的切片
        if silce_seg.max() == 0:
            continue
        else:
            silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
            silce_seg  = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1]

            if  (np.sum(silce_seg == 255) / total) > 0.015:
                silce_vol = fdata_vol[:, :, k]
                silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255

                imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
                imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
                num += 1
        # 将切片信息保存为png格式
    return num


if __name__ == '__main__':

    path= 'E:\\dataset\\LiTS17\\'
    savepath = 'E:\\dataset\\LiTS17\\2d\\'
    filenames = os.listdir(path + "segmentation")
    num = 0
    for filename in filenames:
        num = save_fig(path, savepath, num, filename)

<think>好的,我需要帮助用户找到关于LiTS数据集的信息或下载链接,特别是用于医学图像分割的。首先,用户提到的LiTS数据集,我应该先回忆一下自己了解的信息。LiTS全称是Liver Tumor Segmentation Challenge,应该是一个用于肝脏肝脏肿瘤分割的公开数据集。不过,我需要确认其官方网站或者常见的发布平台,比如Medical Image Computing and Computer Assisted Intervention (MICCAI)会议的相关资源。 根据用户提供的引用内容,特别是引用[1]中提到LiTS使用CT图像,说明LiTS数据集是基于CT模态的,这可能帮助用户在搜索时明确关键词。另外,引用[2]中提到的dataset.json结构,可能是指nnUNet框架处理数据集时的格式,但用户现在需要的是原始数据集的获取方式。 接下来,我需要检查是否有公开的下载链接。通常,这类挑战赛的数据集可能需要在官方网站注册或申请,然后才能下载。比如,LiTS可能在MICCAI的某个挑战赛页面上提供下载,或者通过第三方平台如Zenodo、The Cancer Imaging Archive (TCIA)等。 我需要确保提供的信息准确,所以应该列出可能的来源,并提示用户可能需要注册或遵守数据使用协议。同时,引用用户提供的参考内容,如引用[1]中提到的LiTS数据集使用CT图像,可以结合这点说明数据集的结构和应用场景。 另外,用户可能想知道数据集的基本信息,比如包含多少病例、图像格式、标注情况等。根据常见信息,LiTS数据集通常包含130个CT扫描,分为训练集和测试集,训练集有标签,测试集标签不公开用于挑战赛评估。 最后,我需要建议用户如何进一步处理数据,比如使用nnUNet框架时如何准备数据集,引用中的dataset.json文件可能与此相关,可以提及这一点。同时,提醒用户注意数据使用许可和引用要求,确保合法合规。</think>### LiTS数据集信息与获取方式 LiTS(Liver Tumor Segmentation Challenge)是医学图像分割领域广泛使用的公开数据集,主要用于肝脏肝脏肿瘤的CT图像分割研究。以下是关键信息: 1. **数据集基本信息** - **模态**:3D CT图像(引用[1]提到LiTS仅使用CT图像)[^1] - **标注内容**:肝脏肝脏肿瘤的掩膜标签 - **数据规模**:共130个病例(训练集131个切片,测试集70个切片) - **文件格式**:NIfTI格式(.nii.gz),包含图像和标签文件 2. **官方下载渠道** - **挑战赛页面**:通过MICCAI 2017 LiTS官网申请 - 链接:https://competitions.codalab.org/competitions/17094 - **镜像平台**:部分数据可从以下平台获取 - **TCIA**:https://www.cancerimagingarchive.net/collections/ - **Zenodo**:https://zenodo.org/record/1169361 3. **数据预处理建议** 若使用nnUNet框架(引用[2][3][4]相关),需按以下结构组织数据: ```bash DatasetXXX_LiTS/ ├── imagesTr/ # 训练图像 (例: case_0000.nii.gz) ├── labelsTr/ # 训练标签 ├── imagesTs/ # 测试图像 └── dataset.json # 元数据文件(需包含modality、labels等字段) ``` 参考引用[2]的`dataset.json`示例,LiTS应配置为: ```json { "modality": 0, # CT模态标识 "labels": {"0": "背景", "1": "肝脏", "2": "肿瘤"} } ``` 4. **注意事项** - 需签署数据使用协议(如TCIA的数据访问协议) - 部分测试集标签不公开,需通过官网提交预测结果获取评估 - 推荐使用GPU加速训练(引用[1]建议搭配6核CPU以处理CT数据)
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韩好学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值