枚举算法:试求解两个给定正整数m,n的最大公约数(m,n)。

试求解两个给定正整数m,n的最大公约数(m,n)。

设计思路
若m>n,则最大公约数最大可能是n,最小可能为1,于是设置c循环枚举从n开始递减至1的所有整数,在循环中逐个检测整数c,是否满足田间m%c=0且n%c=0。若满足该条件,说明c同时是m、n的约数,即c是m、n的公约数。
由于循环变量c从n开始递减至1,最先出现的公约数显然为最大公约数,则输出最大公约数gcd(m,n),退出循环结束。

流程图
在这里插入图片描述
代码:

#include<time.h>
#include<stdio.h>
int main() {
	double op,ed;
	double time;
	op=clock();

	long m,n,c;
	printf("请输入正整数m、n:");
	scanf("%ld %ld",&m,&n);
	if(m<n) {
		c=m;
		m=n;
		n=c;
	}
	for(c=n; c>=1; c--)
		if(m%c==0&&n%c==0) break;
	printf("(%ld,%ld)=%ld\n",m,n,c);

	ed=clock();
	time=ed-op;
	printf("time=%lfms\n",time);
	return 0;
}

结果:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coisini_甜柚か

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值