7.数仓项目经验—基准测试

项目经验之基准测试

1. 测试HDFS写性能

测试内容:

  • 向HDFS集群写10个128M的文件。
  1. hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -write -nrFiles 10 -fileSize 128MB
    

注意:

  • nrFiles n为生成mapTask的数量,生产环境一般可通过8088端口查看cpu核数,设置为cpu核数-1

测试结果:

2020-04-16 13:41:24,724 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
2020-04-16 13:41:24,724 INFO fs.TestDFSIO:             Date & time: Thu Apr 16 13:41:24 CST 2020
2020-04-16 13:41:24,724 INFO fs.TestDFSIO:         Number of files: 10
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:  Total MBytes processed: 1280
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:       Throughput mb/sec: 8.88
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:  Average IO rate mb/sec: 8.96
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:   IO rate std deviation: 0.87
2020-04-16 13:41:24,725 INFO fs.TestDFSIO:      Test exec time sec: 67.61

结果分析:

  • Number of files:生成mapTask数量,一般是集群中CPU核数-1,我们测试虚拟机就按照实际的物理内存-1分配即可

  • Total MBytes processed:单个map处理的文件大小。

  • Throughput mb/sec:单个mapTask的吞吐量。

    • 计算方式:处理的总文件大小/每一个mapTask写数据的时间累加。
  • 集群整体吞吐量:生成mapTask数量*单个mapTask的吞吐量。

  • Average IO rate mb/sec:单个mapTask的吞吐量 。

    • 计算方式:每个mapTask处理文件大小/每一个mapTask写数据的时间 累加/生成mapTask数量。
  • IO rate std deviation:方差、反映各个mapTask处理的差值,越小越均衡。

  • 注意:如果测试过程中,出现异常可以在yarn-site.xml中设置虚拟内存检测为false分发配置并重启集群。

  • <!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
    <property>
         <name>yarn.nodemanager.vmem-check-enabled</name>
         <value>false</value>
    </property>
    

2. 测试HDFS读性能

测试内容:

  • 读取HDFS集群10个128M的文件。

  • hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -read -nrFiles 10 -fileSize 128MB
    

测试结果:

  • 2020-04-16 13:43:38,857 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read
    2020-04-16 13:43:38,858 INFO fs.TestDFSIO:   Date & time: Thu Apr 16 13:43:38 CST 2020
    2020-04-16 13:43:38,859 INFO fs.TestDFSIO:         Number of files: 10
    2020-04-16 13:43:38,859 INFO fs.TestDFSIO:  Total MBytes processed: 1280
    2020-04-16 13:43:38,859 INFO fs.TestDFSIO:       Throughput mb/sec: 85.54
    2020-04-16 13:43:38,860 INFO fs.TestDFSIO:  Average IO rate mb/sec: 100.21
    2020-04-16 13:43:38,860 INFO fs.TestDFSIO:   IO rate std deviation: 44.37
    2020-04-16 13:43:38,860 INFO fs.TestDFSIO:      Test exec time sec: 53.61
    

删除测试生成数据

  • hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -clean
    

使用Sort程序评测MapReduce

  1. 使用RandomWriter来产生随机数,每个节点运行10个Map任务,每个Map产生大约1G大小的二进制随机数。

    hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar randomwriter random-data
    
  2. 执行Sort程序

    hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar sort random-data sorted-data
    
  3. 验证数据是否真正排好序了

    hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data
    

3. 项目经验之Hadoop参数调优

  1. HDFS参数调优hdfs-site.xml

  2. The number of Namenode RPC server threads that listen to requests from clients. If dfs.namenode.servicerpc-address is not configured then Namenode RPC server threads listen to requests from all nodes.
    NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作。
    对于大集群或者有大量客户端的集群来说,通常需要增大参数dfs.namenode.handler.count的默认值10。
    <property>
        <name>dfs.namenode.handler.count</name>
        <value>10</value>
    </property>
    
  3. dfs.namenode.handler.count=在这里插入图片描述
    ,比如集群规模为8台时,此参数设置为41。

  4. YARN参数调优yarn-site.xml

  5. 情景描述:

    • 总共7台机器,每天几亿条数据,数据源->Flume->Kafka->HDFS->Hive。
  6. 面临问题:

    • 数据统计主要用HiveSQL,没有数据倾斜,小文件已经做了合并处理,开启的JVM重用,而且IO没有阻塞,内存用了不到50%。但是还是跑的非常慢,而且数据量洪峰过来时,整个集群都会宕掉。基于这种情况有没有优化方案?
  7. 解决办法:

    • 解决办法:

      内存利用率不够。这个一般是Yarn的2个配置造成的,单个任务可以申请的最大内存大小,和Hadoop单个节点可用内存大小。调节这两个参数能提高系统内存的利用率。

      • yarn.nodemanager.resource.memory-mb
        • 表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。
      • yarn.scheduler.maximum-allocation-mb
        • 单个任务可申请的最多物理内存量,默认是8192(MB)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值