项目经验之基准测试
1. 测试HDFS写性能
测试内容:
- 向HDFS集群写10个128M的文件。
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -write -nrFiles 10 -fileSize 128MB
注意:
nrFiles n为生成mapTask的数量,生产环境一般可通过8088端口查看cpu核数,设置为cpu核数-1
测试结果:
2020-04-16 13:41:24,724 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write 2020-04-16 13:41:24,724 INFO fs.TestDFSIO: Date & time: Thu Apr 16 13:41:24 CST 2020 2020-04-16 13:41:24,724 INFO fs.TestDFSIO: Number of files: 10 2020-04-16 13:41:24,725 INFO fs.TestDFSIO: Total MBytes processed: 1280 2020-04-16 13:41:24,725 INFO fs.TestDFSIO: Throughput mb/sec: 8.88 2020-04-16 13:41:24,725 INFO fs.TestDFSIO: Average IO rate mb/sec: 8.96 2020-04-16 13:41:24,725 INFO fs.TestDFSIO: IO rate std deviation: 0.87 2020-04-16 13:41:24,725 INFO fs.TestDFSIO: Test exec time sec: 67.61
结果分析:
Number of files:
生成mapTask数量,一般是集群中CPU核数-1,我们测试虚拟机就按照实际的物理内存-1分配即可
。
Total MBytes processed:
单个map处理的文件大小。
Throughput mb/sec:
单个mapTask的吞吐量。
- 计算方式:处理的总文件大小/每一个mapTask写数据的时间累加。
集群整体吞吐量:
生成mapTask数量*单个mapTask的吞吐量。
Average IO rate mb/sec:
单个mapTask的吞吐量 。
- 计算方式:每个mapTask处理文件大小/每一个mapTask写数据的时间 累加/生成mapTask数量。
IO rate std deviation:
方差、反映各个mapTask处理的差值,越小越均衡。注意:如果测试过程中,出现异常可以在
yarn-site.xml
中设置虚拟内存检测为false分发配置并重启集群。<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true --> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property>
2. 测试HDFS读性能
测试内容:
读取HDFS集群10个128M的文件。
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -read -nrFiles 10 -fileSize 128MB
测试结果:
2020-04-16 13:43:38,857 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read 2020-04-16 13:43:38,858 INFO fs.TestDFSIO: Date & time: Thu Apr 16 13:43:38 CST 2020 2020-04-16 13:43:38,859 INFO fs.TestDFSIO: Number of files: 10 2020-04-16 13:43:38,859 INFO fs.TestDFSIO: Total MBytes processed: 1280 2020-04-16 13:43:38,859 INFO fs.TestDFSIO: Throughput mb/sec: 85.54 2020-04-16 13:43:38,860 INFO fs.TestDFSIO: Average IO rate mb/sec: 100.21 2020-04-16 13:43:38,860 INFO fs.TestDFSIO: IO rate std deviation: 44.37 2020-04-16 13:43:38,860 INFO fs.TestDFSIO: Test exec time sec: 53.61
删除测试生成数据
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar TestDFSIO -clean
使用Sort程序评测MapReduce
使用RandomWriter来产生随机数,每个节点运行10个Map任务,每个Map产生大约1G大小的二进制随机数。
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar randomwriter random-data
执行Sort程序
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar sort random-data sorted-data
验证数据是否真正排好序了
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data
3. 项目经验之Hadoop参数调优
HDFS参数调优
hdfs-site.xml
The number of Namenode RPC server threads that listen to requests from clients. If dfs.namenode.servicerpc-address is not configured then Namenode RPC server threads listen to requests from all nodes. NameNode有一个工作线程池,用来处理不同DataNode的并发心跳以及客户端并发的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大参数dfs.namenode.handler.count的默认值10。 <property> <name>dfs.namenode.handler.count</name> <value>10</value> </property>
dfs.namenode.handler.count
=
,比如集群规模为8台时,此参数设置为41。YARN参数调优
yarn-site.xml
情景描述:
总共7台机器,每天几亿条数据,数据源->Flume->Kafka->HDFS->Hive。
面临问题:
- 数据统计主要用HiveSQL,没有数据倾斜,小文件已经做了合并处理,开启的JVM重用,而且IO没有阻塞,内存用了不到50%。但是还是跑的非常慢,而且数据量洪峰过来时,整个集群都会宕掉。基于这种情况有没有优化方案?
解决办法:
解决办法:
内存利用率不够。这个一般是Yarn的2个配置造成的,单个任务可以申请的最大内存大小,和Hadoop单个节点可用内存大小。调节这两个参数能提高系统内存的利用率。
yarn.nodemanager.resource.memory-mb
- 表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。
yarn.scheduler.maximum-allocation-mb
- 单个任务可申请的最多物理内存量,默认是8192(MB)。